Worked Examples with Fundamental Limits
Prepared by Professor Antonino De Martino (Polytechnic University of Milan) and Dr. Luana Manfredini.
Using Fundamental Limits
Theoretical Background
Here are the most important notable limits in calculus:
\[\lim_{x\to 0} \frac{\sin x}{x} = 1, \quad \lim_{x\to \infty} \frac{\sin x}{x} = 0, \quad \lim_{x\to 0} \frac{\log(1+x)}{x} = 1,\] \[\lim_{x\to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}, \quad \lim_{x\to \pm\infty} \left(1 + \frac{1}{x}\right)^x = e, \quad \lim_{x\to 0} (1+x)^{1/x} = e,\] \[\lim_{x\to 0} \frac{e^x - 1}{x} = 1, \quad \lim_{x\to 0} \frac{\tan x}{x} = 1, \quad \lim_{x\to 0} \frac{\arcsin x}{x} = 1, \quad \lim_{x\to 0} \frac{\arctan x}{x} = 1.\]Key Theorems
Theorem: Non-Existence via Sequences
If there exist two sequences $ a_n \to c $, $ b_n \to c $ such that: \(\lim_{n \to \infty} f(a_n) \ne \lim_{n \to \infty} f(b_n),\) then $ \lim_{x \to c} f(x) $ does not exist.
Theorem: Squeeze Theorem
If $ f(x) \leq g(x) \leq h(x) $ near $ x = c $, and: \(\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L,\) then: \(\lim_{x \to c} g(x) = L.\)
Exercises
Example 1
\(\lim_{x \to +\infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} \right)\)
Example 2
\(\lim_{x \to \infty} x \log\left(\frac{x + 4}{x + 5}\right)\)
Example 3
\(\lim_{x \to \infty} \left(\frac{2x+9}{2x+1}\right)^x\)
Example 4
\(\lim_{x \to \infty} x \log\left(\frac{x^2 + 1}{x^2 + x}\right)\)
Example 5
\(\lim_{x \to \infty} \frac{\log(x^3 + 1)}{x}\)
Example 6
\(\lim_{x \to \infty} \frac{\sin x - x}{\cos x + \sqrt{1 + x^2}}\)
Example 7
\(\lim_{x \to \infty} \sin x \cdot \left[ \log(\sqrt{x} + 1) - \log(\sqrt{x + 1}) \right]\)
Example 8
\(\lim_{x \to \infty} \left(\frac{x + 3}{x - 1}\right)^{x + 1}\)
Example 9
\(\lim_{x \to 0^+} x^{1/\log(3x)}\)
Example 10
\(\lim_{x \to 0} \frac{e^x - e^{-x}}{x}\)
Solutions
Exercise 1
\[\lim_{x \to +\infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} \right)\]Solution:
We multiply and divide by the conjugate expression:
\[\begin{aligned} \lim_{x \to +\infty} &\left( \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} \right) \\ &= \lim_{x \to +\infty} \frac{(x^2 + x + 1) - (x^2 - x + 1)}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} \\ &= \lim_{x \to +\infty} \frac{2x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} \\ &= \lim_{x \to +\infty} \frac{2x}{x \left( \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} \right)} \\ &= \frac{2}{1 + 1} = 1 \end{aligned}\]Exercise 2
\[\lim_{x \to \infty} x \cdot \log\left( \frac{x + 4}{x + 5} \right)\]Solution:
We rewrite the logarithmic expression:
\[\lim_{x \to \infty} x \cdot \log\left( 1 - \frac{1}{x + 5} \right)\]Let \(t = -\frac{1}{x + 5} \), so\) x = \frac{-1 - 5t}{t} $$. Then:
\[\lim_{t \to 0} \frac{-1 - 5t}{t} \cdot \log(1 + t) = -1\]Exercise 3
\[\lim_{x \to +\infty} \left( \frac{2x + 9}{2x + 1} \right)^x\]Solution:
We write:
\[\left( \frac{2x + 9}{2x + 1} \right)^x = \left( 1 + \frac{8}{2x + 1} \right)^x\]Let \(t = \frac{8}{2x + 1}\), so \(x = \frac{4}{t} - \frac{1}{2}\). Then:
\[(1 + t)^{\frac{4}{t} - \frac{1}{2}} = \frac{(1 + t)^{4/t}}{(1 + t)^{1/2}} \to \frac{e^4}{1} = e^4\]Exercise 4
\[\lim_{x \to +\infty} x \cdot \log\left( \frac{x^2 + 1}{x^2 + x} \right)\]Solution:
We simplify the ratio:
\[\frac{x^2 + 1}{x^2 + x} = \frac{1 + \frac{1}{x^2}}{1 + \frac{1}{x}}\]Let \(t = \frac{1}{x}\), so \(x = \frac{1}{t}\). Then:
\[\lim_{t \to 0} \frac{1}{t} \cdot \log\left( \frac{1 + t^2}{1 + t} \right) = \lim_{t \to 0} \left( \frac{\log(1 + t^2)}{t} - \frac{\log(1 + t)}{t} \right) = -1\]Exercise 5
\[\lim_{x \to +\infty} \frac{\log(x^3 + 1)}{x}\]Solution:
We use the identity:
\[\log(x^3 + 1) = \log\left(x^3\left(1 + \frac{1}{x^3}\right)\right) = 3 \log x + \log\left(1 + \frac{1}{x^3} \right)\]So:
\[\frac{3 \log x + \log\left(1 + \frac{1}{x^3} \right)}{x} = \frac{3 \log x}{x} + \frac{\log\left(1 + \frac{1}{x^3} \right)}{x} \to 0 + 0 = 0\]Exercise 6
\[\lim_{x \to +\infty} \frac{\sin x - x}{\cos x + \sqrt{1 + x^2}}\]Solution:
We rewrite the expression:
\[\frac{\sin x - x}{\cos x + \sqrt{1 + x^2}} = \frac{\frac{\sin x}{x} - 1}{\frac{\cos x}{x} + \sqrt{1 + \frac{1}{x^2}}}\]As \(x \to +\infty\), we know:
\[\frac{\sin x}{x} \to 0, \quad \frac{\cos x}{x} \to 0\]So the limit becomes:
\[\frac{0 - 1}{0 + 1} = -1\]Exercise 7
\[\lim_{x \to +\infty} \sin x \cdot \left[ \log(\sqrt{x} + 1) - \log(\sqrt{x + 1}) \right]\]Solution:
We use the identity:
\[\log(\sqrt{x} + 1) - \log(\sqrt{x + 1}) = \log\left( \frac{\sqrt{x} + 1}{\sqrt{x + 1}} \right)\]Now:
\[\frac{\sqrt{x} + 1}{\sqrt{x + 1}} = \frac{\sqrt{x}(1 + \frac{1}{\sqrt{x}})}{\sqrt{x} \cdot \sqrt{1 + \frac{1}{x}}} = \frac{1 + \frac{1}{\sqrt{x}}}{\sqrt{1 + \frac{1}{x}}}\]As \(x \to +\infty\), this tends to 1, so the logarithm tends to 0. Since \(\sin x\) is bounded, the product tends to 0:
\[\lim_{x \to +\infty} \sin x \cdot \log\left( \frac{\sqrt{x} + 1}{\sqrt{x + 1}} \right) = 0\]Exercise 8
\[\lim_{x \to +\infty} \left( \frac{x + 3}{x - 1} \right)^{x + 1}\]Solution:
We rewrite:
\[\left( \frac{x + 3}{x - 1} \right)^{x + 1} = \left( 1 + \frac{4}{x - 1} \right)^{x + 1} = \left( 1 + \frac{4}{x - 1} \right)^x \cdot \left( 1 + \frac{4}{x - 1} \right)\]Let \(y = \frac{4}{x - 1}\), so \(x = \frac{4 + y}{y}\). Then:
\[\lim_{y \to 0} (1 + y)^{\frac{4}{y}} \cdot (1 + y) = e^4\]Exercise 9
\[\lim_{x \to 0^+} x^{\frac{1}{\log(3x)}}\]Solution:
Let \(y = \frac{1}{\log(3x)}\), then \(x = \frac{e^{1/y}}{3}\), so:
\[\lim_{y \to 0^+} \left( \frac{e^y}{3} \right)^y = \frac{e^{y \cdot \frac{1}{y}}}{3^y} = \frac{e}{1} = e\]Exercise 10
\[\lim_{x \to 0} \frac{e^x - e^{-x}}{x}\]Solution:
We split the expression:
\[\frac{e^x - e^{-x}}{x} = \frac{e^x - 1}{x} + \frac{1 - e^{-x}}{x} = \frac{e^x - 1}{x} + \frac{e^{-x} - 1}{-x}\]Using the known limits:
\[\lim_{x \to 0} \frac{e^x - 1}{x} = 1, \quad \lim_{x \to 0} \frac{e^{-x} - 1}{-x} = 1\]So the total limit is:
\(1 + 1 = 2\)