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Introduction

This thesis is part of the European project IDENTITIES, wich involves the Uni-
versity of Bologna, Parma, Crete, Montpellier and Barcelona. The name stands
for: Integrate Disciplines to Elaborate Novel Teaching approaches to InTerdisci-
plinarity and Innovate pre-service teacher Education for STEM. Its purpose is to
produce didactic modules for teachers and pre-service teachers.

This thesis is situated in the border between the research in mathematics and
physics education and aims to contribute to the debate in interdisciplinarity be-
tween the two disciplines in a for preservice teacher education. In particular, the
thesis is focused on the concept of proof and reports the results of the implemen-
tation of a teaching module on parabola and parabolic motion, that includes a
special focus on the historical case of Galileo Galileo’s demonstration of parabolic
motion.

CHAPTER ONE is a introduction to some crucial historical moments concern-
ing the proof, with the aim of pointing out the ideas on proof that Galileo and
Newton imported in physics and their role in the scientific revolution. To give
an idea of the scope and significance of the scientific revolution we present some
characteristics of medieval cosmology, still linked to the Aristotelian conception.
We try to see if the transition to modern science is linked or not to a new idea of
proof. The results of the analysis led us to accept that there is no an absolute idea
of proof, but this is always relative to specific contexts. In order to support this
thesis we consider what a proof is in formal terms, that is, for mathematical logic,
and whether the proof in mathematics can be only grounded in ancient Greece.

CHAPTER TWO is a review of literature in the field of physics education. The
aim is to highlight the different roles of mathematics in the teaching of physics.
We discuss, among others, articles by Uhden, Karam and Redish. We reflect
on the difference between mathematical proof and experimental verification. We
consider different didactic paths in which the epistemological and structural role
of mathematics is emphasized. In particular, we discuss articles that show and
illustrate examples in which formal relations can be used to structure and develop
reasoning.

In CHAPTER THREE we present the IDENTITIES didactic module on parabola
and parabolic motion, designed for preservice teachers, that is to mathematics and
physics students following a didactic curriculum. In the module a special role is
given to Galileo’s proof of parabolic motion, which is historically introduced and
compared with a demonstration taken from a current textbook. The module also
aims to guide the preservice teachers to reflect on the different characteristics and
functions that a proof can assume. In various respects, the module contains a syn-
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thesis of the themes that have been further explored in chapter one and chapter
two, relab in a more effective way from a point of view.

CHAPTER FOUR presents the analysis of the module implementation, held at
the University of Bologna in 2020 to students of mathematics and physics. Students
were asked to produce written essays and to answer questionnaires, during and at
the end of the course. The data was also analyzed to check to what extent future
mathematics and physics teachers were are familiar with the concept of proof.
In particular, the awareness of the characteristics that define a proof and the
awareness of the role of mathematical proof in physics and in a didactic context of
physics were tested.



Chapter 1

Introduction to the proof

1.1 A proof in formal terms

In this chapter we want to mention some historical moments in which proof entered
the world of mathematics and then of science. it is difficult to give an unambiguous
definition of what a proof is. The validity of a proof has always been relative to
the context. Let us start considering how even in the field of mathematical logic
it is not obvious to have a simple idea of proof.
Before proceeding in this direction, however, we want to pause for a moment by
asking ourselves what a proof in mathematics is. Since we want to pose this ques-
tion in the most general terms possible, we present the point of view of formal
logic. The purpose of this example is to show that even choosing the perspective
that is least compromised with assumptions of any kind, the result is not entirely
satisfactory. So let’s see what a proof is in terms of mathematical logic.

In modern mathematics, a theorem is a formal statement of the type

if T then A.

Since the modern mathematics is based on the axiomatic method, we do not con-
sider T as the hypothesis and A as the thesis, but T as the axioms of the theory
and A as a statement that can itself be conditional.
For example, T could be the union of field axioms, order axioms and the complete-
ness axiom and A could be the statement:

"If a real-valued function f is continuous on a proper closed interval [a, b], dif-
ferentiable on the open interval (a, b), and f (a) = f (b), then there exists at least
one c in the open interval (a, b) such that

f ′(c) = 0". 1

Let us make a first remark. Let us note that the meanings of the words "func-
tion", "continuous function", "differentiable function", "interval", "closed inter-
val", "open interval", are not contained in the statement. In principle these words

1Rolle’s Theorem.
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6 CHAPTER 1. INTRODUCTION TO THE PROOF

could mean anything. Which means that the pleasant and concise logical expres-
sion

T ⇒ A

does not contain all that is necessary for the verification of its veracity. A pre-
cise number of definitions are missing, definitions that must be not arbitrary and
supposedly shared. These definitions are the result of a technical, not a logical,
construction work.
Let’s take a nicer example that is not so technical but more intuitive: we take
the axioms of Euclidean geometry as T and the Pythagoras’s theorem as A. Also
in this case, we would need the definitions of "triangle", "square", "right angle",
"hypotenuse". Without these definitions the proposition does not have a unique
meaning in itself, it only has it if it is found in, for example, a geometry book.

If we added all the necessary definitions to the statement, the proposition would
have a complete sense from the logical point of view, without giving anything im-
plied. Of course we are going to extremes, probably no one has ever done this and
no one ever will because mathematical practice does not correspond perfectly to
the philosophy of mathematics. It is legitimate to consider a theorem as a simple
logical proposition, but we must not forget all the technical tools that mathematics
constructs to produce other mathematics. Mathematics as a discipline, not as an
abstraction, is a practice.

Now a second remark. In the case of Rolle’s theorem, starting from the field
axioms is not really rigorous. We have used axioms of field, order, but these are
concepts that have no meaning if we are not operating on a set. But what a set is?
Unfortunately, unlike other mathematical objects, it is not possible to give a simple
definition of a set that does not imply terrible paradoxes2, unless we give an empty
and circular definition such as that of "collection". Sets must be constructed in an
axiomatic way and their construction, in order to have a mathematics that works
without problems, is not at all trivial and touches delicate and unintuitive aspects
such as that of the Axiom of choice. But be rigorous (and here it is a substantial
rigor, it is not a question of love of form) it would be necessary to start from the
Zermelo-Frankel axioms, construct the real numbers, prove their good ordering,
their completeness, construct the usual tools of analysis (the necessary definitions
implicitly attached to the statement) and only then prove Rolle’s theorem. That
is something that no one does even in a university course of analysis. So even
in the temples of rigor, the university departments of mathematics, practicality is
preferred to logical rigor, and certain questions are intentionally left out, relegated
to the limbo of "foundations", which real mathematicians prefer not to deal with.

However, as we have already understood, saying "if T then A" is equivalent to
saying that A is a theorem of T. In the modern logical notation, is indicated with:

2The naive (and natural) definition of a set, identifying it with the characterization of its
elements, can lead to paradoxes linked to self-reference, like most of the paradoxes that afflict
mathematical logic. It is the case of the set of sets that do not belong to themselves. If A =
{x|x /∈ A}, then A ∈ A ⇔ A /∈ A. This paradox was published by Bertrand Russell in 1903 in
The Principles of Mathematics.
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T |= A

This can also be read as "if T is true then A is true". But... what does "true"
mean? If A is a logical consequence of T, what is a logical consequence? Here we
have a problem. We do not really want to deal with these themes here, but let us
consider the words of the logician Gabriele Lolli, to get an idea:

To tell the truth about a knowledge domain, it is necessary to use
a language that speaks about the language in which that knowledge
is formulated - which is called object language - and to assume other
knowledge that can demonstrate properties related to the language of
the object and its meanings. [...] No truth is definable at all, but even
the truth in a limited domain, without passing to a higher domain, is
not definable 3

Let us consider a fascinating expression, often used by non-mathematicians to
express the concreteness that would characterize mathematics:

2 + 2 = 4

Let us assume to consider the set of natural number N, just to avoid tricks related
to finite fields 4. We know that the expression is true, but we cannot prove it in
the domain of arithmetic. We need to move into set theory and in that context
formulate a theorem that has this expression as conclusion. Otherwise:

if 2 = 0++ and 4 = 2++ = 0++++

and + is a injective function
and 0 ̸= x+ and x+ y+ = (x+ y)++ and x+ 0 = x
than 0++ + 0++ = 0++++

Whether or not A is a theorem of T is a fact, but only within an abstract
linguistic universe, made up of symbols that could have different interpretations.
In principle we cannot exclude an interpretation where the axioms of T are true
and A is not.

So, what is a proof? A proof is a guarantee certificate of T |= A. It is not
possible to give a more precise definition. It doesn’t need to be convincing or easy
to understand, the only condition is the finitude of the argument. The belief that
one can have about the veracity of a demonstration is related to one’s maturity and
experience, it is not something objective. In other words, an exact truth can exist
only within a formal language, but when we give meaning to a formal language,
for example a mathematical meaning, the truth is no longer an objective datum
but a convention, even if determined by rigorous logical steps. We can prove that

2 + 2 = 4

3Lolli, 2005, p. 14.
4For example, in Z4 = {0, 1, 2, 3}, 2 + 2 = 0.



8 CHAPTER 1. INTRODUCTION TO THE PROOF

by treating these objects as symbols, but if we think of them as quantities (two
apples plus two apples) we can find the above proof convincing and think that it
also concerns our apples or numerosity in general, we would all probably agree, but
not we are in the context of an objective truth. In fact we all work with numbers
and we often consider them the apotheosis of objectivity but we would be rather
embarrassed if we had to explain what numbers are5.

5A first answer might be that numbers are a representation of the abstract concept of quantity.
But not all numbers seem to fit this definition, such as complex numbers. We could say that some
numeric sets are are a construction that starts from numbers that represent abstract concepts of
quantity and become something else. However, if we tried to clarify what a "representation of the
abstract concept of quantity" is, we would leave the sphere of mathematics and its foundations
and enter directly into that of philosophy. The more mathematical answer to the initial question
"what are numbers?", although it may seem a bit rude, is that we don’t care what they are, as
long as they respect certain properties.
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1.2 Is the birth of proof a "Greek miracle"?

In answering questions such as: "Who are the mathematicians that first used proofs
as we conceive them today? Who set the canons of the proof in logical terms?"
we are likely to come up with things like Plato and Aristotle, Greek culture as
the cradle of civilization, the beacon of reason that illuminates the darkness of
superstition. All correct concepts, but which can lead to excessive simplifications.
Let us consider that:

1. In ancient Greek, mathematical demonstration made its first appearance in
Euclid’s Elements (4th century BC - 3rd century BC) and then in the geo-
metric works of Archimedes (c. 287 BC - c. 212 BC) and Apollonius of Perga
(c. 240 BC - c. 190 BC).

2. The canons of deductive and then inductive reasoning were established by
Aristotle (384 BC-322 BC) in Prior Analytics and Posterior Analytics.

3. Modern mathematics and modern philosophy have shown the existence of
errors and gaps in these ancient works. Nevertheless they have represented
the reference for over two thousand years and form the basis of Western ra-
tionality, which constitutes a unique case in the history of universal thought.

Therefore it seems that in pre-Greek mathematics there is not evidence of demon-
strations; only in Europe there we see use of mathematics unrelated to the field of
applications. Rather than the lack of proofs in pre-Greek mathematics, we should
speak of absence of a general theory that justifies the correctness of a proposition.
This could be identified as a specificity of Greek thought, wanting to preserve one.

In 2012 Karine Chemla has edited The History of Mathematical Proof in An-
cient Tradition6, an important book on Greek mathematics, which contains the
interesting essay Historiography and history of mathematical proof: a research pro-
gramme. Here the author reflects on how an exasperated dichotomy has been
created between Greek mathematics and "Eastern" mathematics and suggests in
what direction it should be overcome.

As Chemla points out, since ancient times, translations of the Elements have
been circulating in Greek, Arabic, Latin, Hebrew and then in several European
popular vernaculars, constituting the central piece of mathematical education. The
proof in those editions constitute a model of incontrovertibility that inspired many
philosophers. We therefore also have a non-mathematical use of mathematical
proofs, which constitute the foundation, even from an identitary point of view, of
Western knowledge. The presence of proofs in Greek mathematics has been used
to support its superiority over Arabic, Chinese, Indian, Babylonian, and Egyptian
ones.
But nineteenth-century scholars of history of mathematics have found traces of

6Chemla, 2012.
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proofs in pre-Greek mathematics. Nonetheless these studies have not been suffi-
cient to change the dominate paradigm.

In 1841, Jean-Baptiste Biot write:

This peculiar habit of mind, following which the Arabs, as the Chi-
nese and Hindus, limited their scientific writings to the statement of
a series of rules, which, once given, ought only to be verified by their
applications, without requiring any logical demonstration or connec-
tions between them: this gives those Oriental nations a remarkable
character of dissimilarity, I would even add of intellectual inferiority,
comparatively to the Greeks, with whom any proposition is established
by reasoning, and generates logically deduced consequences.7

Among the 19th century studies on non-European mathematics, Henry Thomas
Colebrook, mathematician and orientalist, is the first to translate Sanskrit mathe-
matics, publishing among others in 1817 Algebra with Arithmetic and Mensuration
from the Sanscrit of Brahmagupta and Bhāscara.
Colebrook there encountered a kind of algebraic analysis, with symbols and literal
signs. It should be noted that, when Colebrook wrote, analysis it is not yet a
field in which rigour plays a central role (we will return to this further on). Cole-
brook showed the proof of algebraic rules by geometric tools. As François Charette
pointed out, several nineteenth-century studies find the presence of proofs in In-
dian, Chinese, Egyptian and Arabic texts. Some scholars of the same period point
out that these proofs are inferior to those of the Elements, while for others they
represented alternative demonstrations, in which the lack of a rigor comparable to
the Greek one was not enough to not consider them proofs, even interesting.

Like some of the Babylonian tablets, the earliest Chinese writings attest mathe-
matical activity composed of problems and algorithms solving them. The practice
of proof to which they bear witness also aims at establishing the correctness of
algorithms. Chinese sources demonstrate the fact that operations, called meta-
operations, are sometimes applied to the sequence of operations that an algorithm
constitutes. These meta-operations were used to transform an algorithm known to
be true, called qua algorithm, into another algorithm, whose correctness was to be
established.

With the publication of the third volume of Joseph Needham’s Science and Civ-
ilization in China, in 1954, a line of study was opened. The provocative monograph
Was Pythagoras Chinese? 8 By Frank Swetz and T.I. Kao presents the important
Chinese mathematics text Chiu chang suan shu, which also contains a proof of
Pythagoras’s theorem (of the theorem we know by this name). The dating of the
Chiu chang is controversial, but it is accepted that much of the material in the
book dates back to the time of Confucius, of the sixth century BC, and that the
content reflects the mathematical knowledge accumulated until then.

7Chemla, 2012, p. 6.
8Swetz, 1977.
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9

We can see in the figure four congruent right-angled triangles, and let’s consider
one in particular. We call c the hypotenuse, a the major cathetus and b the minor
cathetus. Let’s consider the area of the small inner square, this is (a − b)2. The
four triangles can be composed to form two rectangles of area ab. So considering
the area of the whole square, this is:

c2 = 2ab+ (a− b)2 = 2ab+ a2 − 2ab+ b2 = a2 + b2

Let us go back to the main theme. Chemla wonders what implications these
lines of research bring to the history of proof, and she leaves some questions open:

9This diagram is known in China as hsuan-thu. Picture from Ralph H. Abraham, 25 April
1996.
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On the one hand, proving is an activity that takes place in specific
social and professional groups which have specific agendas.

Indeed, only along these lines can we hope to bring to light and
accommodate the variety of practices in a way more satisfactory than
the old model of competing civilizations which has been pre-eminent
from the nineteenth century onwards.

We have seen that some proofs seem to be conducted in order to
understand the statement proved or the text which states it. In other
cases, proofs have appeared to have had as one of their goals the identifi
cation of fundamental operations or the display of a technique. We have
also seen that in some contexts, proofs were expected to be general or
to comply with an ideal of generality. In others, they should bring
clarity, yield fruitfulness or manifest simplicity. Much more remains to
be done in identifying goals and values practitioners have attached –
and still attach.10

In the perspective of our work, these reflections highlight the cultural aspect of
proof, claimed in retrospect as the milestone of a civilization. To claim the title of
proof, is it enough to demonstrate the validity of an algorithm or is it also necessary
to be part of a structured theory? We believe that it is enough to ask whether
an algorithm is valid to have already fully entered the domain of mathematics.
Therefore, we want to underline that "proof" is not a neutral concept, it is not
objective and it is not a point of arrival: it is the beginning of a construction.

10Chemla, 2012. p. 61.
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1.3 Medieval cosmological vision

This section is based on the studies by Paolo Rossi (Rossi, 1968) and Lino Conti
(Conti, 1992).

Let us start to delve into what will be the specific theme of our work, the
mathematical proof in physics. To understand the importance of Galileo in the
history of physics, it is appropriate to have an idea of the millennial system that
he contributes decisively to destroy.

The medieval universe is not continuous and his physical laws are not the same
in all places; There is a separation between the celestial world and the sublunary
world.

In the sublunary world, everything is a mixture of four elements: earth, water,
air, fire.

The weight of a body is given by the proportion of the four elements in his
composition. In fact, earth and water naturally tend downwards, air and fire up-
wards. From the restlessness of the four elements follows the continuous change
that characterizes the sublunar world. Without the mixing of the elements every-
thing would be at rest: we would have in the center a sphere of earth, surrounded
by one of water, surrounded by one of air, surrounded by one of fire, all motionless.

Upward or downward motions are absolute, not relative. Therefore the bodies
and the preponderant elements from which they are composed, tend to reach their
natural place, following a natural motion. this is the case of a body in free fall, of
the flame going upwards as well as the air bubbles in the water. The motions that
counteract the natural motions, i.e. when the body is subjected to a force contrary
to its nature, are called violent motions. Whoever throws a stone commits this
kind of violence, then when the force acting on the stone is consumed, the stone
can return serenely to its natural place.

In the celestial world, things are different. The motions are all regular, non-
violent, everything is immutable and eternal. The celestial bodies are not composed
of the same elements, but of a fifth element, or quintessence. The planets and the
sun are actually fixed, but rest on concentric celestial spheres, always made of
quintessence, and these speres are rotating. In the celestial world the only type
of motion is the circular one, which is perfect because it has no beginning or end.
On the other hand, in the sublunary world we also have linear motion, limited in
time. The universe is limitated and the Earth, which cannot rotate due to its lower
nature, is immobile in the center of the universe.
As Paolo Rossi points out his conception is not an invention of Aristotle but is the
transposition into the physical world of a purely geometric and abstract model of
Eudoxus of Cnidus, from the first half of the fourth century BC. The Aristotelian
theory was then re-elaborated by Ptolemy of Alexandria, in the 2nd century AD.
His works are the foundation of astronomical knowledge throughout the Middle
Ages. Ptolemaic theories seem able to explain and predict celestial motions. The
observation contrasts with a model in which the planets rotate while remaining
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fixed. In fact their distance seems to change, they seem to stop, go back, change
speed, but all this must be explained in terms of circular motions. Ptolemy im-
plements mathematical theories: the theories of eccentrics, epicycles and equants
(the first two preceding Ptolemy) that perform this task. After that, the picture of
the universe that persists in European culture is a complex mixture of Aristotelian
physics and Ptolemaic astronomy, with further contamination due to the Fathers of
the Church and the philosophers of the Scholasticism. If the picture is articulated,
however, we can identify six points11 in particular that modern science will have
to clash to assert itself.

1. The space-time discontinuity between the celestial and terrestrial worlds. The
division of the universe into two parts: one perfect, the other imperfect and
subject to becoming.

2. The exclusively circular conception of celestial motions.

3. The postulate of the immobile Earth at the center of the universe, became
a "truth of common sense", which seem to have confirmation in the Holy
Scriptures.

4. The belief in the finitude of the universe and in a closed world, a belief linked
to the doctrine of natural places.

5. The belief, linked to the distinction between natural and violent motions,
that every movement is explained as dependent on the nature of the body
or caused by an engine that produces it and keeps it in motion during the
movement. This point in particular is crucial in the perspective of our work.

6. The division between the hypotheses of physics and those of astronomy, as if
the sphere of theoretical speculation were separate from that of mathematics.
This point is precisely the general subject of our work.

Let us take up the fifth point, which concerns the conception of motion. If the
engine must be in contact with the moving body, any remote action is inconceiv-
able. The problem becomes complicated in the case of the (violent) motion of the
projectiles. An arrow should fall to the ground as it detaches from the bowstring.
One first explanation, which appears weak to modern eyes, is that the compressed
air in front of projectiles immediately occupied the void that tended to form be-
hind them, somehow pushing the projectile. A second explanation is the medieval
theory of impetus, a theory that is more interesting and closer to common sense.12

It is a force possessed by the object that is progressively consumed during motion.
Aristotelian astronomy and theory of motion, areas which, as we have seen, are
connected, are those in which Galileo’s work will impose an important discontinu-
ity.

11Rossi, 1968.
12Hestenes, Wells, Swakhamer, 1992. Force Concept Inventory is a test measuring mastery of

concepts commonly taught in a first semester of physics at University.
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13

13Peter Apian’s Cosmographia, 1539. Picture from: https://classicalastrologer.com/nature-of-
signs-planets-in-classical-astrology-2/
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1.4 Mathematics meets science
In the 17th century Descartes and Galileo brought scientific practices to a revo-
lution, choosing the concepts that science should use, what are the goals of the
investigations and the methodology to be used.

Descartes in 1637 published Discourse on the Method of Rightly Conducting
One’s Reason and of Seeking Truth in the Sciences, also known more simply as the
Discourse on the Method. It is a work that appears halfway between science and
philosophy and may seem to be neither one thing nor the other. It is appropriate
here to make a clarification, in the words of the philosopher Carlo Sini:

S’intende che al suo tempo, come ancora al tempo di Newton e
Leibniz, non era accaduta quella separazione fra scienza e filosofia [...]
Al tempo di Cartesio la parola "filosofia" ricopriva ancora un ambito
di problemi e di ricerche che andavano dalla metafisica alla logica, alla
morale e alle scienze naturali; e sebbene Cartesio, come già Bacone,
Galileo o Gassendi, operasse vigorosamente per affermare l’autonomia
di metodo e di contenuto delle scienze naturali, di fatto svincolandole
dalla filosofia scolastica e in particolare dall’aristotelismo, nondimeno
era ancora sua viva preoccupazione quella ricerca dei principi primi e
dei fondamenti ultimi e indubitabili che erano propri della filosofia. 14.

We can specify that Descartes not only deals with first principles (Galileo and
Newton do it equally) but he does it in a philosophical, speculative way. For this
reason, although it comes very close, we cannot strictly speak of scientific method
in Descartes. Nevertheless Descartes is convinced that reality should be observed
in a mathematical key. He says to:

do not admit or hope for any principle for physics other than those
of geometry and abstract mathematics, because thus all phenomena of
nature are explained and can be proved. 15

And also, without frills:

give me extension and motion and I will build the universe 16

It is a mechanistic philosophy: if extension and motion are mathematically ex-
pressible, all the phenomena, including life, can be described mechanically. Descartes

14"In his time, as still in the time of Newton and Liebniz, that separation between science
and philosophy had not yet occurred [...] At the time of Descarte the word "philosophy" still
covered a field of problems and research ranging from metaphysics to logic, morality and natural
sciences; and although Descartes, like Bacon, Galielo or Gassendi, worked vigorously to affirm the
autonomy of method and content of the natural sciences, de facto freeing them from scholastic
philosophy, and in particular from Aristotelianism, nevertheless that search for first and for the
ultimate and indubitable foundations which were proper to philosophy, was still crucial." Carlo
Sini, Introduction to Descartes, 1993, p. XII.

15Kline 1991, p. 380.
16Ivi, p. 381.
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constructed a philosophical system that disrupts the influence of scholasticism, at-
tributing the causes of natural phenomena to purely physical events. His works had
a strong influence, his deductive and systematic philosophy also impressed Newton.

As Kline poits out, much of Galileo ’s philosophy coincides with that of Descartes,
but it is Galileo who formulates concrete procedures for modern science, demon-
strating their effectiveness with his work. His method, which is still considered
the scientific method, is exposed in his work Discourses and Mathematical Demon-
strations Relating to Two New Sciences. The two sciences mentioned in the title
concerned the strength of materials and the motion of objects. It is a text secretly
transported to Holland and published there in 1638, when the Inquisition had al-
ready prohibited its publications.
Galileo is an eclectic scientist: acute astronomical observer, inventor of the micro-
scope and the pendulum clock, he also successfully deals with the theory of sound
waves.
As Descartes, he broke with mystical speculative theories in favor of a mathemat-
ical and mechanical view of nature, but he deviated from him with respect to the
individuation of the first principles. Principles cannot be identified by intellectual
speculation, as a Pythagorean would have believed and as then Aristotle had defini-
tively established. The relationship between principles and experience is however
delicate and we will focus on this in the second part of this section.

With regard to experimentation, as it will be for Newton fifty years later, the
figure of Galileo is a transitional figure. He was convinced that few crucial ex-
periments would provide the principles. Many of the experiments, that he later
conducts, were thought experiments.
Once the principles have been established, most of the work is of a mathematical-
deductive type, for both Galileo and Newton. Galileo is satisfied with the theorems
that follow from a single principle as with the discovery of the principle. The math-
ematical approach is also perceptible in the abstraction process with which Galileo
models physical phenomena. In the study of motion it eliminates air resistance
and friction, just as mathematicians eliminate the molecular structure, color and
thickness of lines to study their fundamental properties. Galileo take in considera-
tion motion in a vacuum even if this contradicts Aristotle and even Descartes. The
method of abstraction deviates from reality, but leads back to reality with greater
force than not considering all the factors.

Another important point to underline is that Galileo wants to find quantitative
axioms. For Aristotle a ball falls towards the Earth because every object seeks its
natural place and the natural place of heavy bodies is the center of the Earth. A
quantitative statement says that the speed of the falling ball is:

v = 9, 8t

Where t is the fall time. To our eyes it is probably pleasant to recognize a clear
equation in the midst of so many philosophical dissertations, even if this equation
gives no explanation the reason why the ball falls. That is what equations do:
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they do not explain but they describe. Aristotelians spoke of essences, of natu-
ral places, of violent motion and natural motion, the concepts that Galileo chose
the property of being measurable, i.e. with values that can be related by equations.

Similarly, Newton had good reasons for preferring quantitative mathematical
laws over physical explanations. The central physical concept of its celestial me-
chanics, the force of gravitation, had no explanation. This was the passage to
modern science, the possibility of a mathematical description even where physi-
cal understanding was lacking. We conclude this brief introduction to scientific
thought with the words of Morris Kline, who describes the virtuous circle that has
arisen between mathematics and physics in this way:

Since science had come to depend heavily on mathematics, almost
being subordinated to it, scientists extended the domain and techniques
of mathematics, and the multiplicity of problems provided by science
gave mathematicians numerous and important directions of develop-
ment for their creative activity. 17

So far everything seems wonderful and perfectly harmonious. However, one
might wonder if with the advent of the scientific method the sphere of knowledge
was suddenly freed from the ancient metaphysical legacies and from the authori-
tative weight of Greek philosophers. Unfortunately it is not that simple, and it is
the theme we will deal with in the next section, in which we will consider some
aspects of Galileo and Newton’s thought. We will see that tradition and modernity
not only continue to coexist, but are intertwined and difficult to separate.

17Kline 1991, p. 392.
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1

1.5 Concepts of proof in Galileo and Newton
The scientific revolution, which has as symbol Galileo and finds an ideal fulfillment
in Newton’s Principia, is not a simple and straightforward process. It would be
misleading and erroneous to think of summarizing it as a mere passage from ab-
stract philosophy to mathematical empiricism and it is also not correct to think of
it as a radical break with the Aristotelian tradition. We have already mentioned
how Copernicus thought himself in the wake of the Aristotelian tradition. But
this could be said of most of the scholars formed in the sixteenth century, with a
scholastic training.

As Ennio De Bellis18 points out, the reference teacher of Galileo’s first logical
thought is certainly Paul Valla, and reference texts of Valla’s logic course are part,
like those of other European universities, of a rigid Aristotelian curriculum based
essentially on Categoriae, De interpretation, Analytica priora, Analytica posteri-
ora, Topica De sophisticis elenchis by Aristotle, Isagoge by Porfirio and Summulae
logicales by Pietro Ispano.
How profound is the influence of Aristotle’s thought on the Pisan physicist? Let
us consider Galileo’s Tractatio de praecognitionibus et praecognitis in William Wal-
lace’s translation. To the question "Should the principles of sciences be so evident
tha they cannot be proved by any reasoning?" Galileo replies:

It seems so, first, from Aristotle, text 15, [a] because principles are
supposed, not proved; again [b], because it is the task of the metaphysi-
cian 19 to proove principles, therefore not that of the other sciences;
again [c] because principles must be foreknown prior to any demonstra-
tion, therefore they are not proved. 20

Reading this passage we could almost think of a metaphysician who dictates a
priori axioms that the scientist then uses. But that is not at all the case. Shortly
after Galileo continues:

Certain moderns distinguish two kinds of principles: some are of the
object or in the order of being, others are of knowledge or in the order
of knowing. They teach that principles in the order of being can be
demonstrated a priori from principle in the order of knowing. But quite
the contrary: for principles in the order of being can be demonstrated
only a {a posteriori} from principles in the order of knowing. Averroes,
in the first book of the Posterior Analytics, com. 22, and in the seventh
book of the Metaphysics whom practically everyone follows, states that
principle in the order of being, when unknown, can be demonstrated a
posteriori.21

18De Bellis, 2016.
19My italics.
20Galileo, Logical treatises, p.90.
21Ibidem.
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And therefore while fully inscribing the Scholastic tradition, and seeking from
this legitimacy, at least the boundary that separates a physical law from a principle
(in the order of being that can be demonstrated through principles in the order
of knowledge) seems to be thinning. Even if in theory we still have two separate
sciences, metaphysics which defines principles and physics which studies phenom-
ena, at least in Galileo’s early stage. But what is more precisely the relationship
between principles and experience?
In this regard, Ludovico Geymonat explains that Galileo is well aware that the
axioms and general definitions will not, except in exceptional cases, be derived
from experience, such as for example the definition of naturally accelerated mo-
tion, which uses concepts such as that of instantaneous speed, not relevant to
experience.

Even in this case, however, the theory based on axioms so far from
experience could - according to Galileo - turn out to be an authentic
scientific theory, provided that it satisfies the condition that the con-
sequences rigorously deduced from the aforementioned principles are
confirmed in experience. In other words: it is not necessary that all
the propositions of the theory be adherent to the facts; instead it is
necessary that all the facts of the field of phenomena studied can be
inserted into the theory.22

In this sense Galileo separates physical theory and pure mathematics. Math-
ematics does not ask for any control from experience, continuing to hold true
regardless of whether the figures studied exist in reality or not. Physical theory, on
the other hand, proposes to arrive at phenomena, and if its consequences are not
confirmed by these, it no longer has scientific value. As we know, consistently with
his studies and its methodological approach, Galileo openly rejected the Ptolemaic
system, with all that follows. We could therefore conclude that Galileo is respectful
of tradition from a formal rather than a substantive point of view, and that his
thinking is in fact already modern.

Let us now consider Newton’s position with respect to this order of questions.
First of all, in the eighteenth century, an Aristotelian terminology is still in use. In
particular Newton uses, while reinterpreting it, an important Aristotelian concept:
that of efficient cause.
Newton’s view is of theological type. First of all, the Principia consider what he
calls final causes. In fact, the motion of celestial bodies acts according to the law
of universal gravitation, but their regular position can only be explained with

The design and dominion of an intelligent and powerful being.23

Secondly, the Principia also provide formal causes, namely the laws of motion
that determine the trajectories that bodies can follow. Final and formal causes
have a different ontological status.

22Geymonat, 1970, vol II, pp. 205-206.
23Newton, Principia, p. 941.
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As Steffen Ducheyne and Erik Weber24 point out, the main concepts of the Prin-
cipia have a certain ambiguity: force, attraction and gravity may seem purely
mathematical or may seem causal. Some passages could lead to a positivistic read-
ing of the principles, others refer to the importance that Newton attributes to
causality. This apparent ambiguity could be justified by the fact that Newton’s
theory acts on two very distinct levels: the plane that describes how things work, in
a mathematical way, and that which tells us why they happen, from a theological
point of view. Let us consider the following comment to Definition VIII :

Porro attractiones et impulsus eodem sensu acceleratrices et motri-
ces nomino. Voces autem Attractionis, Impulsus, vel Propensionis cu-
juscunque in centrum, indifferenter et pro se mutuò promiscuè usurpo;
has vires non Physicè, sed Mathematicè tantùm considerando. (italics
mine) Unde caveat lector, ne per hujusmodi voces cogitet me speciem
vel modum actionis causamve aut rationem Physicam alicubi definire,
vel centris (quae sunt puncta Mathematica) vires verè & Physicè tribuere;
si forte aut centra trahere, aut vires centrorum esse dixero. 25

But in Newton’s view, bodies are passive and moved by active principles. The
celestial motions do not have origin in mechanical causes. Therefore the fact that he
does not consider physical causes and the sites of forces does not imply a rejection
of the efficient cause in general. Ducheyne remembers how in the scholium of
section 11 of the book Newton defines the steps of the physical investigation of
gravity thus:

In mathesi investigandae sunt virium quantitates et rationes illae,
que ex conditionibus quibuscunque positis consequentur: deinde, ubi in
physicam descenditur, conferendae sunt hae rationes cum phaenomenis;
ut innotescat quaenam virium conditiones singulis corporum attractivo-
rum generibus competant. Et tum demum de virium speciebus, causis
et rationibus physicis tutius disputare licebit. Videamus igitur quibus
viribus corpora sphaerica, ex particulis modo jam exposito attractivis
constantia, debeant in se mutuò agere; et quales motus inde consequan-
tur.26

24Ducheyne, 2007, p. 266.
25"I use interchangeable and indiscriminately words signifying attraction, impulse, or any sort

of propensity toward a center, considering these forces not from a physical but only from a
mathematical point of view. Therefore let the reader beware of thinking that by words of this
kind I am anywhere defining a species or mode of action of a physical cause or reason, or that
I am attributing forces in a true and physical sense to centers (which are mathematical points)
if I happen to say that centers attract or that centers have forces." Newton, Principia, Definitio
VIII.

26"Mathematics requires an investigation of those quantities of forces and their proportions
that follow from any conditions that may be supposed. Then, coming down to physics, these
proportions must be compared with the phenomena, so that it may be found out which conditions
(or laws) of forces apply to each kind of attracting bodies. And then, finally, it will be possible
to argue more securely concerning the physical species, physical causes and physical proportions
of these forces. Let us see, therefore, what the forces are by which spherical bodies, consisting of
particles that attract in the way already set forth, must act upon one another, and what sorts of
motions results from such forces." Newton, Principia, Scholium Liber Primus, Sectio XI.
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Therefore physical agents are inferred from the mathematical properties present
in nature. But as far as gravity is concerned, Newton has established that a non-
material cause must be introduced, he does not conceive the idea of action at a
distance, and the first cause of celestial motion is God itself. Hence Newton, the
inventor of calculus, in competition with Leibniz, the writer of a Euclidean setting
system has God as a first principle. Not as an a priori axiom, but a posteriori,
through a method that is not substantially different from that of Galileo. The con-
clusion, however, is stronger and more difficult to reconcile with modern scientific
sensitivity. As Geymonat points out27, the results pursued by Newton were mainly
two: on the one hand to provide a new proof of the validity of religion, leaning it on
the results of science, and at the same time to give indirect confirmation to science.
This marriage between science and religion, however, did not last long, if not in
Freemasonry. For the church, Newton’s theology is too heterodox and became a
point of friction between a "rationally based" religion and a religion based on the
Gospel.
With regard to the initial question, we cannot say that Newton has completely
emancipated himself from metaphysics. What is often identified with the birth of
modern physics may not seem entirely modern to us. After all, every revolution is
relative to the context in which it takes place. It may not be obvious (perhaps to
some, yes) that the invention of the differential calculus was born in conjunction
with an innovative theological conception. In any case it is so, and with Newton
not only mathematics but modern mathematics, largely invented by himself, has
become part of the scientific discourse.

27Geymonat, 1970, pp. 647-648.



Chapter 2

Roles of mathematics in physics
education

2.1 Mathematics as a language, a possible role of
math in physics education

In the first chapter we have made a historical and conceptual overview, necessarily
biased and far from any kind of exhaustiveness, to give at least an idea of the
role of proof in science. Our goal is now to see what the roles of proof can be
in physics education. This type of discourse can only be interdisciplinary. In
fact, the concept of demonstration from Euclid onwards it is what characterizes
mathematics and philosophy as disciplines, even before characterizing science. As
we will see, mathematics and physics, while maintaining a specific identity, are
often inseparable fields. So, assuming we have given an idea of what a mathematical
proof is and why it is important in the scientific field, we want try to understand
how it can be used in physics education.

Let’s start by taking a step back and asking ourselves: what are the roles of
mathematics in the study of physics? The first answer that can come to mind is
probably: mathematics serves physics as an indispensable tool for making accounts
and providing predictions. This fact is undeniable and it is a great start, however,
from a didactic point of view, there can be problems when this fact becomes an
exclusive perception. For students (henceforth by students we mean high school
students, although the problems we present may obviously also concern university
students) calculation is often perceived as the only function of mathematics in
physics.

In contemporary literature, as we shall see, ample space is given to the concep-
tion that mathematics, in itself but in particular within the didactics of physics,
is instead a language.1 And a language, unlike a mere tool, is something that is
functional not only to practice, but also to the development of ideas.

The conception of mathematics as a language and the link between this lan-
guage and the study of physics is not entirely new. We will not deal here with the

1In this section in particular we will refer to the work of Pietrocola, 2010.

23
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declinations of this concept in the Platonic and Pythagorean doctrines, but we will
refer to a very famous quotation from Galileo. In turn, this quote lends itself to
many interpretations.2 We limit ourselves, for now, to taking it as a symptom of
how much this link between mathematics and physics, which develops in terms of
a language, is something that comes from afar, from the roots of scientific thought.

La filosofia è scritta in questo grandissimo libro che continuamente
ci sta aperto innanzi a gli occhi (io dico l’universo), ma non si può inten-
dere se prima non s’impara a intender la lingua, e conoscer i caratteri,
ne’ quali è scritto. Egli è scritto in lingua matematica, e i caratteri son
triangoli, cerchi, ed altre figure geometriche, senza i quali mezi è im-
possibile a intenderne umanamente parola; senza questi è un aggirarsi
vanamente per un oscuro laberinto.3

As mentioned in this chapter we want to deal the interdisciplinarity between
mathematics and physics, and from this point of view we can ask ourselves what
the passage from Galileo can suggest. Well, the physical world is not something
whose essence can simply be revealed. It is written in a language that is not a
natural language, it is not what we commonly use to communicate. This means
that any form of knowledge can only be reached through a translation operation.
But our modern sensibility knows well that every form of translation is both an act
of love but also of betrayal. Systematically something is lost, in every translation,
and more translations are just as legitimate. There is not only the intrinsic logic of
the phenomenon we want to describe, but also the logic of the grammar we use to
express ourselves, which we can never ignore. How can this awareness be usefully
transferred into teaching?
We will see various aspects and various responses of specialist reading, but one in
its naive simplicity is particularly important to us: to make students aware of the
path they are taking and the tools they are using.

2Often a Platonist interpretation is given to this passage: mathematics would be the way to
grasp the "true" essence of things, beyond the appearances offered by phenomena. But a different
interpretation is possible: only mathematics gives us a sufficiently powerful and precise tool to
understand the universe. To understand where the metaphor of the book and of the characters
comes from, it is necessary not to isolate the passage from what precedes it:

It seems to me, besides this, that I perceive in Sarsi a firm belief that in philosophizing it is
necessary to rely on the opinions of some famous author, so that our mind, when not married
to another’s speech, would have to remain in all sterile or infertile; and perhaps he believes that
philosophy is a book and a man’s fantasy, like the Iliad and Orlando Furioso, books in which the
least important thing is that what is written there is true. Mr. Sarsi, this is not the case. The
philosophy . . .

We see that the emphasis is actually on the fact that philosophy (understood naturally as
"natural philosophy," or "science" in today’s language) is not a man’s fantasy, nor is it based on
authority ‘, but it is written in the book of the universe. Mathematics is the language you need
to know to decipher it". Fabri, 2010.

3"Philosophy is written in this grand book, which stands continually open before our eyes
(I say the ’Universe’), but can not be understood without first learning to comprehend the
language and know the characters as it is written. It is written in mathematical language, and
its characters are triangles, circles and other geometric figures, without which it is impossible
to humanly understand a word; without these one is wandering in a dark labyrinth". Galilei,
Saggiatore.
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Furthermore, even if we will not deal with it specifically, it seems fair to point
out that the treatment of mathematics as a language is, as one might imagine,
also useful in the teaching of mathematics. In reality, the question is anything
but trivial, and rather delicate, we just make a vague mention of it. Most people
probably have an idea of what the study of physics is, and if this idea fits into
something like "the study of the laws of nature", however crude, it is not that far
from the truth. On the other hand, those without a scientific background, including
many students, think often that mathematics is "the study of numbers" or "how
to calculate". Well ... in this case we are much further away from something that
resembles the specificity of the discipline. What kind of knowledge is mathematical
knowledge? Bertrand Russell explains this with his brilliant concise clarity:

Mathematical knowledge, it is true, is not obtained by induction
from experience; our reason for believing that 2 and 2 are 4 is not that
we have so often found, by observation, that one couple and another
couple together make a quartet. In this sense, mathematical knowledge
is still not empirical. But it is also not a priori knowledge about the
world. It is, in fact, merely verbal knowledge. "3" means "2 + 1," and
"4" means "3 + 1." Hence it follows (though the proof is long) that
"4" means the same as "2 + 2." Thus mathematical knowledge ceases
to be mysterious. It is all of the same nature as the "great truth" that
there are three feet in a yard.4

We are not suggesting to offer a speech in these terms to high school students,
but it might be helpful if it was part of the teacher’s cultural background. Mathe-
matics could be presented not as revealed knowledge, as an eternal world of ideas,
but as a construction, which should be historicized, and as a discourse. At least
this is the point of view we have chosen to take as an interpretative paradigm for
our work.

But scientific language is not made up of mathematics alone, it is an hybrid
language, incorporating aspects of common language and formalized language. As
Pietrocola points out, an excessive emphasis on formal language, which represents
the final stage of the scientific process, can be counterproductive on students, if
an appropriate interpretation is not provided. Students may be led to think that
scientific work is a mere discovery of pre-existing facts, without understanding that
scientific work is at least in part, but a decisive part, an invention 5.

In a perfect world, the teacher has the task of pointing out how mathematics
is a language and also giving instructions for the correct use of this language.

There is a myth about the relationship between physics teaching
and mathematics teaching that can be overturned when there is clarity
concerning the differences between both of these skills – while the first
skill can be obtained outside physics education, meaning, in subjects

4Russell, 1945, Chapter XXXI.
5This is why we believe that even in the field of didactics the assumption of a Platonist

point of view is less constructive than emphasizing the construction and convention aspects of
mathematics.
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exclusively mathematics; the second one cannot be. The capacity of
dealing with mathematics within its own situations does not warrant
the capacity of using it in other areas of knowledge, as physics. In other
words, to have technical command of mathematics does not guarantee
the capacity of employing it to structure thought in other domains.
This implies that there must be a didactic-pedagogical intention in
preparing the physics students to make structural use of mathematics.

The fact that technical skills are not converted into structural skills generates
what in the literature is called an epistemological obstacle. In the third chapter of
this thesis, in particular, we will see concrete examples in which we try to overcome
obstacles of this type and create structural skills.
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2.2 Mathematization of physical phenomena

If the proof made with pen and paper constitutes an iconic moment of truth in
mathematics, the equivalent in physics is given by the experiment in the labora-
tory. So we may be led to think scientific experiment can have a function similar
to that of a proof: to convince of the validity of a physical law, just as a proof con-
vinces of the validity of a mathematical conjecture. There is an obvious important
difference: a proof in mathematics, logically correct and whose hypotheses have
all been made explicit, is sufficient, while no physical experiment is conclusive in
itself.
In physics, as in mathematics, there are theorems and their corollaries, however,
they are not the consequence of arbitrarily fixed axioms, but the consequences of
physical laws considered valid. Physical laws cannot be verified in the sense that
this expression has in mathematics. They would need to pass an infinite number
of experimental tests. There is therefore no "physical proof", experimental verifi-
cation always has a different meaning than the proof of a theorem. Experimental
verification is an empirical stage of the scientific method, the proof of a theorem is
an eternal truth. The price to pay for "eternity" is to have chosen the axioms in a
completely arbitrary way. As far as physical laws are concerned, it is always possi-
ble that a new experiment necessitates a new reformulation.. Physics is therefore
the slave of two severe masters, on the one hand mathematics, with its formalisms
and the hypothetical deductive method, on the other, experimental verification,
with its merciless confrontation with a reality that is not always easy to approxi-
mate. In this section we want to focus on how mathematics is a cumbersome guest
in the world of physics, and in the didactic consequences that this entails.

For many physicists it is impossible to consider a physical theory
without mathematics. Instead of seeing mathematics as an external
useful tool, it is rather considered to be the of nature (or even of God
according to James Jeans and Paul Dirac). In this sense it penetrates
into the physicists’ discourse, since theoretical explanations in physics
are frequently enabled by the deductive character of the mathematical
formalism. It also helps to structure physical thought, as mathematics
often provides analogies that enable physicists to think about unknown
phenomena and serves as a reasoning guide in the path to abstraction.6

In Uhden’s article just quoted, reference is made to a text by Gingras: What did
mathematics do to physics? 7, Where a historical perspective is adopted to argue
that "physics is mathematical in its formulation". Indeed, it is difficult to establish
whether the leading scientists of the seventeenth and eighteenth centuries, includ-
ing Newton, Euler, Lagrange, Fourier, the Bernoullis were more mathematicians
or physicists.
Gingras gives us a classification of the main three effects of the mathematization
of physics :

6Uhden, 2012.
7Gingras, 2001, pp. 383-416.
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1. Social : The sitematic use of mathematics makes the study of physics im-
practical for laymen. We observe that a consequence of this is the extreme
difficulty encountered in the creation of popular science texts, where the au-
thor tries as much as possible to "give an idea" without distorting what is
being explained.

2. Epistemological : The mathematization of physics has changed the meaning
of the term explanation. The explanation of a physical phenomenon has been
gradually replaced by the need to represent it with mathematical formula-
tions, hence a transition to formal language.

3. Ontological : The mathematization led to not considering as existing sub-
stances such as caloric, cartesian vortices, electric fluids, the luminiferous
ether or the caloric. We have a world described by mathematical relation-
ships and not by essences that have certain properties.

With respect to the epistemological aspect, we can still observe how historically
we start from an intuitive physical principle and mathematization is a subsequent
step, which often involves a redefinition of the principle. The example that we
will face in the third chapter, regarding the parabolic motion studied by Galileo,
focuses precisely on this.
The mathematization of physics has significant practical aspects in the develop-
ment of the discipline. Just as mathematics is for building other mathematics,
mathematical physics is for building other physics.

The mathematization of a physical theory makes it not only a more
concise and precise representation, but it also serves as a reasoning
guide for thinking about new phenomena. Formal analogies used to
think about electricity as a fluid, light as a wave and an electric cir-
cuit as a spring-mass system are examples of the reasoning by formal
similarities in physics. According to Feynman, “the equations for many
different physical situations have exactly the same appearance. This
means that having studied one subject, we immediately have a great
deal of direct and precise knowledge about the solutions of the equa-
tions of another.”8

This is what Wigner defined as "unreasonable effectiveness"9, the fact that
more descriptions of reality are obtained from a physical equation than they were
initially thought, even in very different contexts. While noting that all this is
undoubtedly fascinating, we want to consider what the problems may be at the
didactic level.

It is often taken for granted, and to some extent it is indisputably true, that
mathematical prerequisites are necessary to take physics courses. Mathematical
skills can be conceived as tools that the student should have in an imaginary tool-
box, always ready for use. The problem is that a purely algorithmic learning of

8Uhden, 2012.
9Wigner, 1960, pp. 1–14.
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mathematical procedures does not in any way guarantee the subsequent under-
standing of physical phenomena. There are areas in which the distinction between
mathematical and physical concept is rather artificial, as an understanding from a
mathematical point of view is essential for the understanding of the physical con-
cept, but also understanding from a physical point of view helps the understanding
of the mathematical concept. The perfect example is given by the concepts of ve-
locity and acceleration. The concept of derivative of a function was clearer to me,
or at least I had a useful representation of it, when I discovered that velocity is
obtained as a derivative of displacement and acceleration as a derivative of veloc-
ity with respect to time. The physical concept of acceleration is often difficult to
understand for high school students because it is a rate of a rate: acceleration is
the time rate of change in velocity, which also is a rate, namely the time rate of
change in position. Of course it is not possible to talk about derivatives when the
concepts of speed and acceleration are introduced for the first time at school, at
most they can be revisited at a later time when the necessary calculus tools have
been introduced.

Uhden gives a little example of a didactic approach to a process of mathema-
tizing a physical phenomenon related to these concepts, a free fall problem. He
is asked to describe the movement of a body falling from a certain height due to
gravity. The goal is to determine the position of the body as a function of time,
s = s(t).
First of all it should be noted that the problem is idealized: body size and air
resistance are not considered. The problem is also mathematized: time and space
are represented by real numbers. This means that we are already within a precise
physical-mathematical model. The didactic approach consists in gradually increas-
ing the level of mathematization.
We point out first of all that the relationship we are considering is not linear. The
more time passes, the more the body travels greater distances for the same amount
of time. That the increase in velocity is 10m/s2 could be discovered through an
experiment or a simulation.
We proceed by giving some representations of the speed increase: first a table that
reports different values of the speed v at a time t and then the relative graph(v vs
t) from which the relation v = g · t can be deduced. This is already a higher level
of mathematization, followed by the conclusive one: interpreting the area under
the graph as the distance s(t) traveled by the body.
To arrive at this conclusion we can use the graph of uniform motion as a bridge.
In this case the area has the shape of a rectangle whose sides correspond to v and
to t. Since here velocity times time equals the displacement s(t), the area can be
interpreted as the displacement of the body.
To pass from the case of uniform motion to that of uniformly accelerated motion,

we can consider the triangle that has area
1

2
v · t. Since v = g · t we have:

s(t) =
1

2
· v · t = 1

2
(g · t) · t ⇒ s(t) =

1

2
gt2

Nothing particularly original and complicated, but we want to underline how the
key point is to provide students with an awareness of the tools and method that
is being used.
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2.3 Lack of physical reasoning in classroom

Another crucial aspect that mathematics plays in the study of physics, in research
as well as in teaching10, is the construction of models. Models are a tool that
scientists use to create new theories, test ideas, analyze data, as well as teachers
use them to make students understand what they are talking about. Making it
clear that scientific progress necessarily goes through the development of models
is a way to make students understand how science works.
Important examples are those for weather forecasts and those for the analysis of
atomic structures. In general, the model creates an approximation of physical re-
ality in accordance with a theoretical description.
Still everything looks beautiful and harmonious in theory, but we will see that
there is a risk that this is lost due to a "hyper-mathematization" of physics. By
"hyper-mathematization" we mean something stupid like: "to solve the exercise
find which are the correct variables to insert in the appropriate formula".

We will consider then a study of 2015 by Hansson, Juter, and Redofors 11.
The study aims to highlight the dynamics that are created between reality, theo-
retical model and mathematics, during physics lessons. Lessons held in an upper-
secondary school by the same teacher in three classes were taken into consideration,
for a total of seven lessons. The idea stems from the belief that the complex rela-
tionship between a theoretical model and the real world can be one of the causes
why physics is seen by students as too difficult and at the same time not very
interesting. The awareness or not that students have of the relationship between
observations, theoretical models and reality inevitably influences the ability to ap-
ply their knowledge to real world situations 12.
Various studies, including those we have already mentioned by Uhden et al. and
by Pietrocola, highlight how the ability to transfer mathematical knowledge to an
applicative field is by no means automatic. In this case we talked about the dif-
ference between the "technical" and the "structural" role that mathematics has in
physics instruction.
In fact, in the upper-secondary school the study of physics is often reduced to solv-
ing standard problems, those that are generally found at the end of each chapter
in the textbook. Teachers often assume that a good understanding of physical
concepts and patterns is behind the ability to perform these exercises. Unfortu-
nately, this is not the case at all, as the very interesting Force Concept Inventory
by Hestence, Wells and Swackhamer shows 13. It is about a catalog of the main
misconceptions relating to Newton’s laws, starting from a questionnaire based on
qualitative questions, tested on a sample of 1500 high school students and 500
university students. The funny and dramatic data that emerge suggest precisely
that there is not necessarily a correlation between "algorithmic ability" in carrying
out the exercises and understanding of the principles. The interesting aspect of
the Force Concept Inventory is that it does not simply show an absence of physical

10Schwarz, 2003.
11Hansson, 2015.
12Hansson, 1958.
13Hestence, 1992.
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principles, but the replacement of Newtonian principles with alternative, unscien-
tific, common sense principles. Among the most common we find the principle of
"impetus", which recalls the Aristotelian principle, according to which a moving
object has a certain energy. We then have the principle of "active force", for which
a motion cannot be given without a cause, for which the concepts that speed is
proportional to the force and that the acceleration is proportional to the force are
equivalent.
The Force Concept Inventory, however, limits itself to detecting misconceptions
without identifying a specific cause. We can hypothesize that upstream there was
not enough work in clarifying the relationship between reality and modelling, as-
suming that once the principles were exposed and practiced with typical exercises,
everything was fine.

This is the framework in which the study by Hansson et al. fits. Here reality,
theoretical models and mathematics are considered as distinct entities, although
of course not separate. Reality simply refers to objects or phenomena observed in
the real world. Theoretical models can already be mathematical or formulated in
a qualitative way. By mathematics we mean concepts, theorems, representations
and the usual mathematical methods.

The classes of students considered were as follows: 30 first year students, studying
mechanics, 10 third year students, studying optics and atomic physics and another
class of 7 third year students, studying electric fields. Both the teacher and the
students were filmed by multiple cameras at the same time. classes were observed
during lectures, group exercises and worklabs. Here we limit ourselves to quoting
some fragments of a lesson on electric fields, by way of example. The lesson begins
with the teacher demonstrating the strength of electric fields. The students could
see the voltage required for a spark in a parallel-plate capacitor charged by a hand-
powered generator.

The teacher asked the students why there is a spark and concluded
that the capacitor wants to equalize the charge (link 1). The spark oc-
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curred more often and with less required voltage when the distance be-
tween the plates decreases (link 3), “Is this logical?” asked the teacher,
thus directing attention to relationships between Reality and Theoret-
ical model (link 1), and the students thought so. The teacher asked
whether they in their previous physics course ever calculated the field
strength required for a spark. The students confirmed that they had
done so and gave the formula E = U/d which the teacher wrote down
on the whiteboard. [...] Then, the teacher drew a parallel-plate capaci-
tor on the whiteboard (horizontal, with negative plate up and positive
down) and asked “what would happen if you put an electron in the
electric field”, noticing that an electron would accelerate downward as
it travels horizontally between the plates. The students were uncertain,
and the teacher pointed out that there is no force acting upwards and
explained that there is a net force, which willmake the electron accel-
erate. The teacher’s and students’ reasoning was now instead focused
on the relation between Reality and Theoretical models (link 1) with
an emphasis on Theoretical models. The teacher draws attention to
that they now can use the formulae F = ma and (E = F/Q and write)
F = EQ, noticing, “F is the force that the electron senses in the electric
field.” The focus was now on formulae manipulation (link 2, technical),
and in this context, one student commented on Coulomb’s law asking
“did it not also contains Q?”. The teacher replies that “in that case
it’s about the force between two charges”. The student browsing his
formula book continues “what about U = E/Q” and the teacher replies,
“In that case E does not mean field strength but energy, it’s a bit tricky”.
(italics mine14) Then, the teacher, for the largest part of the lecture,
solved problems related to field strength on the whiteboard. The focus
was on manipulation of formulae and finding formulae that can be used
to solve the problems (link 2, technical). In this, the teacher gave ex-
amples very similar to the textbook problems, which the students were
going to work with later on (e.g. “you can expect such a problem”,
“there is such a problem”).15

In the overall analysis of the collected material, a conspicuous focus placed by the
teacher on the manipulation of formulas is noted. This could be an explanation
of why teachers view students’ poor mathematical skills as a major problem for
physics courses and a limitation for learning.
Although there has not been a total lack of links between reality, theoretical mod-
els and mathematics, the type of communication encountered in the classroom is
characterized by a type of physics more concerned about determining the correct
mathematical formula to use. The actual ability of students to understand physical
principles remains hidden.

The most positive moments, in which the type of communication has changed,

14It is possible that a clarification on how a formal analogy between formulas implies a different
meaning would have deserved a few more words than merely defining the thing as "a bit tricky",
although of course this is not trivial and the teacher may have been caught off guard.

15Hansson 2015, pp. 13-14.
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were those in which qualitative problems were proposed, such as those that char-
acterize the Force Concept Inventory.

The article concludes by declaring the need for similar studies and hoping for a
progressive change in the type of communication that takes place in the classroom.

To remain in the image of the triangle proposed by the researchers, let’s imagine
an isosceles triangle based on reality and theoretical models and a disproportionate
height with mathematics as its vertex. As a result, the link between reality and
theoretical models is relatively short, and impoverished. It also follows that we are
far from using mathematics as a language, we are instead faced with a mathematics
devoid of meaning, the mere management of a vast collection of formulas.16

16We can mention that even in mathematics education there can be a problem of the same
type, essentially when the algorithmic aspect is privileged or even the teacher penalizes the use
of algorithms other than those suggested by him, even if correct.
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2.4 Formulas as an epistemological tool

As we have already observed, in physics education equations are often reduced to
computational tools to solve typical problems, while, almost on the contrary, in
the field of research they have a role linked to the formulation of new theories.17

As Karam suggests in his article Introduction of the Thematic Issue on the Inter-
play of Physics and Mathematics,18 mathematics can be an epistemological tool; it
allows scientific knowledge but also allows us to understand what logic is intrinsic
to scientific knowledge and its development.

When thinking about possible questions to ask to equations, one
can probably distinguish between "Hows’" and ‘"Whys’". If, for in-
stance, the centripetal acceleration equation (ac = v2/r) is presented
in instruction, a teacher can (and should) focus on its meaning and
investigate how the variables relate to each other (e.g., what happens
to the acceleration when the velocity is doubled). But there is another
important dimension that is linked to asking why the equation has its
particular structure19.

The ability to interrogate an equation is important to understand everything it
can tell us. There is another aspect linked to this, often equally overlooked: ques-
tioning the origin of the equation we are considering. In physics lessons it is not
unusual to find a naïve inductive approach, where equations are treated as mere de-
scriptions of regular phenomena. The passage from experimental data to algebraic
expression is often presented as trivial, despite the fact that they are two separate
epistemological domains. Just like routines in treating equations as computational
tools, routines for obtaining equations inductively (for example Worksheets) are
something that deprives formulas of their educational potential20.

In summary we could say that we would like that the way to look at equations
in the didactic field was more similar to the way of considering the equations in
the research field; i.e. tools that are a constitutive part of the cognitive process,
rich in meaning, with the awareness that they are neither neutral nor fallen from
the sky. Very well, but from a practical point of view, how can we proceed in this
direction? Karam suggests two ways:

1. Talking in the classroom about the interplay between mathematics and physics
from a historical and philosophical point of view. 21

17Karam, 2015 b.
18Karam, 2015 a.
19Ibidem.
20Karam, 2015 b.
21We add: certainly not in the terms in which it is spoken of in a scientific journal, but it

is important to break the taboo that certain topics are too difficult to be addressed. The real
difficulty is more for the teacher than for the students, and lies in choosing understandable words
and appropriate examples.
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2. Expand the repertoire of possible justifications for the most important phys-
ical equations encountered in school.

In this eye we will consider a study published by Bagno, Berger and Eylon in
2008, Meeting the challenge of students’ understanding of formulae in high-school
physics: a learning tool 22. Here the less virtuous approach to formulas, which we
previously defined as "algorithmic", is labeled as "plugh-and-chug": the numbers
are "plugged in" and the answers are "chegged out". But these problem-solving
situations, in which students blindly search for equations, without making sense of
physical reality, where do they come from?
The problem about plug-and-chug is that feel they have to do just that. As Karam
simply illustrates, if we have been taught physics in a certain way it is natural that
once we become teachers we will repeat the same modalities. We could say that
the sins of the fathers fall on the children, unless there is an act of emancipation.
And here is the proposal by Bagno et al. in this sense.

The study presents a test to which 35 high-school students were subjected, after
studying kinematics and dynamics. Two formulas were submitted to them:

x = x0 + v0t+
1

2
at2

and ∑
F⃗ = ma⃗

Students were asked to:

1. Write down, using physics terms, the meaning of each of the components of
the formula.

2. Specify the conditions under which the formula can be applied

3. Show that the units of measure are the same on both sides of the equation.

It was found in particular that 80 % of the students had difficulties in specifying
the conditions under which the formula can be applied.

in the formula
∑

a⃗ = ma⃗, many students said that "The second law deals only
with objects moving with constant acceleration".

Difficulties emerged in manipulating the units of a formula: 67 % of the students
had difficulties showing that the units on the right side of a formula are identical
to the units on the left side.
In particular analyzing the formula x = x0 + v0t +

1

2
at2, the vast majority of the

students did not succeed in showing that the units on both sides of the formula
are metres [m]. A few students managed to reach the relation

[m] = [m] +
[m]

2
22Bagno, 2008
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but could not proceed any further.

Analyzing the formula
∑

F⃗ = ma⃗, many students could not show that the
units on both sides of the formula are newtons (N).

Following this test, the researchers, in collaboration with a group of teachers
from the same school, developed an activity that was called "interpretation of a
formula". Given an equation, students are asked to represent the relationships
between its components in different ways and to identify particular houses. Only
later they are asked to apply it in school-type problems and real-life scenarios.

The activity takes place in five phases:

1. An individual work, in which the students, guided by a set of tasks, explicitly
elicit their knowledge about the formula.

2. The students work in small groups, on the same set of tasks, evaluate their
individual work, add new ideas, and reach a consensus (or disagreement).

3. A class discussion, in which a representative of each group presents the
group’s consensus; all the issues raised in the group work are discussed, under
the guidance of the teacher, and a classroom summary is formulated.

4. Homework on applications, in which the students use the formula in other
formal learning experiences and real-life scenarios.

5. Individual reflection, in which each student individually accounts for what
he/she has learned in the previous four phases and identifies what still re-
mains unclear. It is useful to carry out a discussion in the following lesson
about students’ individual reflections.

The activity was implemented in 8 classes with 140 high-school students. Most of
the students involved gave positive feedback. There was a general improvement in
identifying the conditions under which a formula can be applied and in recognizing
particular cases. For example, about the formula

x = x0 + v0t+
1

2
at2

one student reported learning that it can only be used when acceleration is
constant. More interestingly, another student, regarding

x1 − x0 = 0

as a special case of the formula

v2 = v20 + 2a(xt − x0)

stated: "before this activity, I did not know that the meaning of (xt − x0) = 0 is
that the objec returns to its initial position with inverse velocity."
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We point out the study by Kneubil and Robilotta, Physics Teaching: Mathe-
matics as an Epistemological Tool23, which fits perfectly with the framework we
have drawn. This article focuses on a didactic approach to Coulomb’s law and
its theoretical premises concern philosophy of education, essentially saying many
of the things we have already observed but with a much deeper and more elegant
argument. On the non-separability of mathematics and physics (which, however,
as we will be able to observe, does not mean identity at all):

Of course, it would be desirable to base educational action on a clear
understanding of patterns realized in the relationship between Physics
and Mathematics. However, the continuity between these two subjects
makes the construction of comprehensive philosophical or epistemolog-
ical discourses extremely difficult. The situation is similar to that of
describing the tones of a sunset in a dry and dusty landscape. Although
one may notice that red, yellow, and blue do coexist, and an overall pat-
tern may be perceived, the multitude of subtle variations prevents the
full description. Moreover, and what may be a more serious problem,
the tones of the sunset change quickly with time, some of them fade
away, whereas others show up. The same happens with Mathematics
within the Physics community.

Then there is the theme of an epistemological approach to student errors, a
theme that is also raised in some way in the Force Concept Inventory. Errors
cannot be reduced to "deviances" simply to be corrected. The errors are inserted
in an epistemological framework (not always coherent but in a certain with its
own dignity), it is therefore the student’s epistemological framework that must be
modified. In this regard, Kneubil and Robilotta propose a beautiful quote by the
philosopher of science Gaston Bachelard, which in turn we propose again and on
which, for the moment, we stop.

Pour le savant, la connaissance sort de l’ignorance comme la lu-
mière sort des ténèbres. Le savant ne voit pas que l’ignorance est un
tissu d’erreurs positives, tenaces, solidaires. Il ne se rend compte que
les ténèbres spirituelles ont une structure et que, dans ces conditions,
toute expérience objective correcte doit toujours determiner la correc-
tion d’une erreur subjective. Mais on ne détruite pas les erreurs une
a une facilement. Elles sont coordonnés. L’esprit scientifique ne peut
pas se constituer qu’en détruisant l’esprit non scientifique. Trop sou-
vent le savant se confie à une pédagogie fractionnée alors que l’esprit
scientifique devrait viser à une reforme subjective totale.24

23Kneubil, 2015.
24"For the scientist, knowledge comes out of ignorance as light comes out of darkness. The

scientist does not see that ignorance is a tissue of positive, stubborn, solidary errors. The only
realizes that spiritual darkness has a structure and that, under these conditions, any correct ob-
jective experience must always determine the correction of a subjective error. But you don’t easily
destroy mistakes one by one. They are coordinated. The scientific mind cannot be formed with-
out destroying the unscientific mind. Too often the scientist confides in a fragmented pedagogy
while the scientific spirit should aim at a total subjective reform". Bachelard, 1940.
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2.5 Dimensional Analysis and "anchor equation"
We want to continue the discussion on the functions of equations in physics edu-
cation considering some concrete tools classroom teaching. We rely on two Redish
papers, Using Math in Physics: 1. Dimensional Analysis and Using Math in
Physics: 3. Anchor equations.

Learning physics is difficult because the understanding of physical knowledge,
often not intuitive, is compounded by the need for a casual use of mathematical
symbology. We observe that this is a specific problem, different from those en-
countered in the first years of high school studying mathematics, where the main
challenges are logical reasoning, often linked to the resolution of geometric prob-
lems, and the manipulation of a formal language; but rarely in basic mathematics
(this is no longer true in the final years of high school) the two objectives to
be achieved, logical reasoning and technical ability in manipulating the formulas,
are proposed simultaneously, unless ad hoc exercises are proposed. In the study
of physics, the coexistence of two levels, that of knowledge and that of form, is
structural from the outset. Let us consider two specific resources to address this
difficulty, from the perspective of what has been presented in the previous section.

Dimensional Analysis is often seen as a simple check tool to check for errors.
If the two sides of the equation the units of measure do not coincide, you are
doing something wrong. But Dimensional Analysis can also play a deeper role in
understanding the subject. First of all, measures are not numbers. The symbols we
use in physics represent quantities that can be assigned a number in different ways,
depending on the measuring instrument and the choice of the unit of measure.

When we write an equation containing measures, the statement
that two things are equal means that they match physically, not that
they have the same number. They will have the same numerical value
only if they are expressed in the same units. As a result, dimensioned
equations can look peculiar if you’re only thinking about the math of
pure numbers. The equation 1 in = 2.54 cm is a legitimate equation
in physics because both sides represent the same physical length. The
equation x = t with x = 3 cm and t = 3 s is not a legitimate equation
even though the numbers match. If we choose different units (as we are
free to), the numbers no longer match. 25

In a physically valid equation, the units and the numbers don’t have to match,
but the dimensionalities do. The concept that must reach students is that we as-
sociate a number with a symbol, but the number is not fixed, what is fixed is the
property of the physical object we are describing. Dimensional analysis is also a
good way to put a focus on functional dependence, direct and inverse proportion-
ality. Having said that, the dimensional analysis remains an excellent tool to check
that the equations do not contain errors.

25Redish, Dimensional 2021, p. 397.
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By dimensional analysis we do not mean the verification of the units of measure,
but of the type of unit of measure. We equate the letters in square brackets to
capital letters where L stands for length, T for time, M for mass, Q for charge and
Θ for temperature. For example

[v] =
L

T

Dimensionality specifies what kind of what a symbol represents but not the
specific value, dimensionality has no numbers attached to it. This makes the
algebra of different from standard algebra. For example:

L+ L = L

2L = L

This can create challenges, and students struggle to understand the utility of
dimensional analysis if they are not asked to practice it. 26

But students have a lot of trouble with DA. It asks them to look at
symbols in a way with which they have little or no experience. They’re
not sure that it will help them get “the answers” (which they think
are numbers), so they tend to be not only unmotivated to learn it but
resistive. The only way to reset their (epistemological15) expectations
is to make it a part of what they are required to do and something on
which they are evaluated. If we never explicitly ask them to do DA in
a situation in which they are evaluated, it sends the message that we
don’t really think that it’s important.

Students’ misconceptions about the kind of knowledge they are
learning and what knowledge they need to bring to bear in the class are
often responsible for student difficulties and resistance. I present DA in
the first few classes. To show my students that I care about DA early
in the class, my weekly quizzes have a DA problem in most weeks. I
also give my students DA problems at various points through the class,
especially when a concept with a new dimensionality is introduced. By
the end of the year, a significant fraction of my students mention DA
as one of the important things they have learned. 27

Alongside dimensional analysis, Redish describes another useful teaching tool.
It is in some way a possible development of what we have seen in the study by
Bagno, Berger and Eylon and which is basically something that it is also possible to
achieve independently in one’s own teaching experience. In physics, some critical
equations can help synthesize a a lot of knowledge on a content topic. Redisch refers
to these fundamental equations as anchor equations to emphasize them special role

26Redish proposes an example of a quiz question:
The measure of the strength of an electric dipole is the dipole moment p. The magnitude of

the electric force exerted by a dipole on a charge q a distance r away from it is given by (if the
dipole is correctly oriented) Fp → q = kCqp/r

3. What is [p] (the dimensionality of the dipole
moment)? Express your answer in terms of the dimensions M, L, T, Q, Θ.

27Redish, Dimensional 2021, pp. 339-400
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as stable fixed points in the organization of knowledge. A typical example is of
course Newton’s second law, of which Redish gives this exhaustive representation:

It is interesting to read Redish’s narration of how he realized the importance of
the way in which Newton’s second law is presented, in the heart of his didactic
experience:

As trained physicists who blend physics and math and can unpack
the knowledge coded in an equation, we often use a shorthand that
hides the content being called upon and makes an equation look like a
computational tool to be memorized. Newton’s second law is a great
example of this. It’s the fundamental powerful principle (anchor equa-
tion) that underlies all of our understanding of classical motion at scales
from the molecular to the galactic, at speeds up to a significant fraction
of the speed of light. It’s the principle that organizes all our knowledge
of motion. And yet... Before I realized all this, I had a tendency to
just write “F = ma” for Newton’s second law. I sat up and took notice,
howev- er, when, in one of my physics for life sciences classes, after my
discussion of springs, a student asked, “Professor, what’s the difference
between F = kx and F = ma?” All of a sudden a lot of student behav-
ior that never made sense to me fell into place. Why would they use
F = ma for each of the different forces in a problem? Why would they
tell me acceleration caused forces? And how would they ever forget
it? Well, of course one reason is they were not making the blend, just
using each equation as a calculational tool. But a second reason was
that they were failing to identify one of the two equations as a core
principle (and the other as a crude toy model).28

Other examples are the work-energy theorem, Maxwell’s equations, the Schrödinger
equation, the already mentioned Coulomb’s law, Einstein’s equations of general rel-
ativity.

28Redisch, Anchor 2021, p. 601.
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Emphasizing the importance of fundamental equations is one way of countering
the deleterious tendency of textbooks to put a collection of equations at the end of
the chapter, giving the misleading message that these many equations are indepen-
dent calculational tools. Emphasizing the importance of fundamental equations is
one way of countering the deleterious tendency of textbooks to put a collection
of equations at the end of the chapter, giving the misleading message that these
many equations are independent calculational tools. A typical example is with the
equations of kinematics, where all particular cases can be obtained from the law
of uniformly accelerated motion, or, as Redish suggests, from the same definitions
of speed and acceleration.

To get students to value anchor equations, it’s important to offer problems
easy to set up using an anchor equation and a few straightforward manipulations,
rather than ones that are easy to simply put numbers into a memorized equation
and calculate. If this type of ideas reaches students, they will start taking notes not
mechanically but organizing their notes around them by organizing them around
some key concepts, such as anchor equations. Their exam performance will improve
along with the perception that "there really isn’t that much to learn", even though
there is, but it seems less if it can be developed from a small set of "things to
know".
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Chapter 3

A teaching module within the
IDENTITIES project

3.1 Introduction to the module and the IDENTI-
TIES project

After a historical overview of the concept of demonstration and an overview of
didactics of physics, in this last and third chapter we will consider something more
concretely close to the world of teaching.

In the present chapter the module on parabola and parabolic motion is pre-
sented. It consisted in eight lessons and it was implemented within a physics
education course at the University of Bologna in October 2020. The name of the
course is "Teaching of physics", held by Professor Olivia Levrini. The course is
mainly targeted both to physics and to mathematics students who have chosen the
teaching curriculum and who are likely to become teachers.

The lectures involved different experts and researchers from Professor Levrini,
expert on physics education, to Professor Laura Branchetti, expert on mathematics
education, to Professor Paola Fantini, a secondary school teacher and researcher.
In the following sections the contents of the lessons are presented.

The topics covered, as we will see, are not far from those already addressed in
this work, namely the role of proof and the interdisciplinarity between mathematics
and physics, but the perspective is, or at least would like to be, more teaching-
oriented. The conditional is bitterly obligatory, because as anyone who has had
teaching experience in high school probably knows, the most splendid theoretical
preparation does not prepare, and cannot prepare, for the impact with human and
institutional dynamics that are often very far from the topics studied at University.

Just to give some trivial examples, a high school teacher has to confront with
the difficult relationship with adolescents, for which no course in psychology or
pedagogy can prepare, or the pressure exerted by the parents. Every utopian at-
titude inspired by the movie with Robin Williams Dead Poetry Society must be

43
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descended into a highly bureaucratic institutional context, which in all likelihood
will shape the teacher himself. Bringing innovations can lead to rejections, both
on the part of the "system" and on the part of students themselves. If they have
become accustomed to specific learning methods, for example a mnemonic type,
they could not address favorably on novelties, since they, stimulating a different
kind of reasoning, could lead to an increaseing fatigue.

With this in mind, two aspects make this chapter at least in part closer to the
reality of the school than the previous two. The first aspect is that the content
of the module are curricular topics, so school teachers are used to introduce them
separately in mathematics, the parabola, and in physics, the parabolic motion.
The second, perhaps even more interesting, is that we will not limit ourselves
to retracing the topics covered during the module but we will also present the
preliminary results of an analysis of the essays, delivered from the students before
the final exam, with the aim of investigating the main difficulties that students have
when they talk about the proof (Chapter 4) Students who have the peculiarity of
already thinking of themselves as future teachers but who in most cases are not
chronologically distant from their school experience. Taking their feedback into
consideration gives an idea, however indicative, of how our themes are perceived
by those who will be the teachers of tomorrow and who were at school a few years
ago.

The module and this thesis itself are part of the IDENTITIES project (https://identitiesproject.eu/),
an Erasmus + project coor- dinated by the University of Bologna. The project also
involves the University of Parma, Crete, Montpellier and Barcelona. The name
stands for: Integrate Disciplines to Elaborate Novel Teaching approaches to InTer-
disciplinarity and In- novate pre-service teacher Edu- cation for STEM challenges.
STEM is another acronym (people involved in science education love acronyms)
which stands for: Science, Technology, Engineering and Mathematics. The main
objective of IDEN- TITIES project is the design of novel teaching approaches on
interdisciplinarity in science and mathematics to innovate pre-service teacher ed-
ucation for contem- porary challenges. The interdisciplinary topics, focus of the
research, are both emergent advanced STEM themes (i.e. climate change, arti-
ficial intelligence, nano- technologies) and curricular interdisciplinary topics (i.e.
cryptography, parabola, non-Euclidean geometry, and gravitation). These themes
will be the contexts to explore inter-multi-trans-disciplinary forms of knowledge
organization and to de- sign classroom activities and new models of co-teaching.
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3.2 Interdisciplinarity and epistemological activa-
tors

The acronym IDENTITIES naturally refers to the concept of identity, in particular
to the identity of the various disciplines. More specifically, it is meant that the
interaction between different disciplines is something that strengthens, rather than
attenuates, specific identities. Interdisciplinarity does not mean breaking down the
boundaries of the different disciplines, on the contrary we assume that disciplines
are necessary and that each has a specific role. The origin of the term discipline
comes from the Latin "discere", that is referred to learning. So, the disciplines
are a body of knowledge and skills that ground their roots into the educational
necessity to re-organise knowledge to teaching and learning it. 1 The canonical
division of physics into mechanics, thermodynamics, electromagnetism, etc., is an
organization that was born at the end of the nineteenth century to effectively trans-
mit knowledge from one generation to another. The issue of interdisciplinarity has
been addressed in recent years in the teaching theory of mathematics and physics
to prevent the risk of trivializations; the risk is to use mathematics as a mere
calculation and formalization tool in physics and physics as a mere application
field of mathematics (REF). The relationship between the two disciplines, both
in the scientific revolution of the seventeenth century, but also the revolution of
the late nineteenth century that led to the rewriting of the foundations of the two
disciplines, sees them deeply connected. Is it possible to show in class that math-
ematics is something that introduces new forms of reasoning into physics? How
can we highlight the structural rather than an instrumental role of mathematics in
physics? Looking for examples, the role of geometry (of geometries) in the special
theory of relativity is certainly visible. Using one mathematics instead of another
brings into the physics of specific epistemological assumptions.

In order to value the role of mathematics in physics and vice versa, two im-
portant historical case were chosen. On one hand the discovery of the parabolic
shape of the trajectory of a projectile that led to the establishment of Physics as a
discipline and, on the other, the unification of the conics carried out by Apollonio
that led to the birth of projective geometry. Both the episodes are exemplar for
reflecting on the nature of interdisciplinarity and on the structural role that both
the disciplines played.

In order to reflect on it, the research group elaborated a construct, that is called
"epistemological activators". For epistemological activator they mean "kinds of
themes / activities / ideas that can foster the activation of epistemological reflec-
tions on the nature of knowledge and science itself by either organizing knowledge
on a higher abstractive level or setting a context where specific ideas can become
key concepts” (Ravaioli, 2020).

In the module, symmetry and proof were reconceptualized as "epistemological
activators", in order to guide students to a) reflect on the disciplines’ identities
and b) the interdisciplinary “contamination” that characterize the disciplines’ evo-
lution. The presence of symmetry in the representation of motion led to an idea
of motion as we conceive today, overcoming the Aristotelian conception of motion

1Alvarogonzález, 2011, pp. 387-403.
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as a a succession of violent and natural motions. This episode is representative
also because it marked the shift “from the world of the about to the universe of
precision” (Koyre, 1967), in which the mathematics from the celestial world de-
scends into the terrestrial world expanding the interpretative schemes that, until
then, were used to represent the earthly motions: straight lines and arcs of circum-
ference. In fact, the works of first Guidobaldo dal Monte with the introduction
of the experiment as practice and method of physics, and then of Galileo Galilei,
who proved the parabolic shape of the projectile’s trajectory, led to consider the
parabola as a possible interpretative scheme.

Symmetry and proof were reconceptualized as “boundary object” (Akkerman &
Bakker, 2011). For boundary objects Akkerman and Bakker mean “artifacts that
articulate meaning and address multiple perspectives.

...

The boundary object belongs to both one world and another. It is precisely this
feature that seems to explain how the boundary divides as well as connects sides.
However, the boundary also reflects a nobody’s land, belonging to neither one nor
the other world.

...

On one hand, they enact the boundary by addressing and articulating meanings
and perspectives of various intersecting worlds. At the same time, these objects
move beyond the boundary in that they have an unspecified quality of their own
(neither–nor)” (Akkerman & Bakker, 2011). So boundary objects are characterize
by an intrinsic ambiguity that allow us to enact a multivoicedness (both–and) and
the unspecified quality (neither–nor) of boundaries, creating a need for dialogue
between disciplines and people, “in which meanings have to be negotiated and from
which something new may emerge.” (Ibidem, 2011).

In this perspective, symmetry and proof were reconceptualized as boundary
object, since their characteristic of both-and and neither-nor in these historical
episodes, and their educational potential was exploited to explore both the iden-
tity aspects of mathematics and physics and the ways in which the two disciplines
dialogues, so as a way to overcome the boundaries and to recognize the interdisci-
plinary relationship and co-evolution of these two disciplines.

In the following, the content of the module are introduced in a deeper way.
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3.3 Basic connotations of a scientific text
Linguistics provides tools for assessing the consistency of a text. These tools help
us to analyse a text on, at least, three different level:2

1. Textual level, that allow to observe the more general structure of the text
and the thematic progression, and how it describes the interweaving of math-
ematics and physics. The thematic progression operatively concerns the use
of connectives, repetition, implicit content, etc. This can highlight how dif-
ferent parts of the text communicate with each other to deliver the message
as intended by the sender.

2. Syntactic level. It highlights the prevalence of coordinates or subordinates
and, hence, points out the logical links between different portions of sentences
and text.

3. Lexical level. It consists in the analysis of the particular terminology used,
of the semantic field of words and expression in the text. It is fundamental
for example to observe the scientific lexicon and its belonging to different
disciplines (e.g. mathematics and physics).

On the textual level logically connected parts of text can be linked by connectives,
or the links can be implicit and left to the reader. The implicit content can be of
two types. One type is what is taken for granted, the other is what is implicitly
suggested, for example through juxtapositions. The implicit contents are often
potentially carrier of misunderstandings, let us see an example of bad juxtaposition:

"Einstein wanted to reconcile the theory of electromagnetism with
the principle of relativity already formulated by Galileo: all inertial
reference systems in motion with respect to each other are equivalent
and none can be considered in motion or at rest absolutely".

Reading this text it is not clear (unless you already know it) if the sentence
after the colon refers to the reconciliation between electromagnetism and Galieo’s
principle or if it is only Galileo’s statement.

So, what are the specific characteristics of a scientific text? We can note a
prevalence of informative and expository aspects to the detriment of descriptive
and narrative aspects, which are nevertheless present. It is a text that has the
function of informing the recipient and enriching his knowledge about a specific
topic. The content must be well organized. The text must make explicit what the
recipient is not required to know before reading the text.
The language is sectorial, has its own vocabulary, is aimed at a small community,
which can be made up of students or scientists. Each word corresponds to a single
object, such as speed, force, boson. The scientific text prefers impersonal forms,
nouns prevail over verbs, there is an unusual density of meaning compared to other
types of texts. A textbook has a greater rigidity than a popular text or a scientific

2Polverini, 2022.
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article, since in an educational context the informative function often prevails over
the argumentative one. A scientific text must convince the scientific community, a
textbook exposes something consolidated.

The tools introduced can be used also to investigate from a linguistic point of
view the historical texts and textbooks. In this case, the tools were used to point
out some differences and similarities between Walker’s textbook 3 and the famous
text Discorsi e dimostrazioni matematiche intorno à due nuove scienze attenenti
alla mecanica & i movimenti locali written by Galileo Galilei. 4

We can observe how in Galileo’s work a real dialogue takes place only in the
first two days. On the third and fourth day Salviati reads a treatise in Latin on
motion. The use of the vernacular is in itself an innovation by Galileo and the
form of the dialogue, of Platonic tradition, favours the identification of the reader.
The text is not a textbook but a hybrid between a scientific text and a work of
dissemination. It is of course a work aimed at a cultured public. Walker, for his
part, in a scholastic perspective, pays particular attention to scientific language and
to take nothing for implied. He specifies that a projectile does not mean (only) the
ammunition of a firearm, but any object that can be thrown (i.e. projected) and
which is therefore subject only to the force of gravity. In both Walker and Galileo
the structure of paragraphs and chapters is described, to allow the reader to orient
himself.

3Walker, 2017, pp. 88−116.
4Galileo, Discurses.
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3.4 Introduction to Galileo’s proof of parabolic mo-
tion

The study of the motion of projectiles, has historically marked the transition from
qualitative to quantitative arguments in physics. In the Aristotelian, pre-Galilean
perspective, mathematics, in particular geometry, was considered suitable for de-
scribing the celestial world while it was not suitable to illustrate the sublunar world,
full of imperfections. The idea of composing two different motions, the uniform
rectilinear one and the uniformly accelerated one, thinking them independently
and not in opposition, was revolutionary. The only motions conceived by Aristotle
were the rectilinear one and the circular one. And so even in the sixteenth cen-
tury parabola was not part of the interpretative schemes. Modeling the motion of
a projectile as a parabolic motion is in itself an important epistemological leap.
Change occurs when science has to respond to practical and concrete needs such
as the study of ballistics; science as we conceive it implies the passage from a con-
templative dimension to an applicative and active dimension.

The experimental method is an intertwining between theory and technique, in
which the observation of nature is not enough. In an experiment a phenomenon
is isolated, it is "purified", made to resemble an ideal situation which is not the
phenomenon itself but what makes it understandable, studyable, and measurable.
Guidobaldo Del Monte had made empirical observations on the trajectory of a
projectile by modeling it with a catenary.

In his notes he describes an experiment, in which a ball dipped in ink is thrown
on an inclined plane, drawing its own trajectory. This allows to observe the sym-
metry in the ascent and descent phase. The experiment is conceived as a result of
interpretative conjectures, and is in support of the same. A similar method is de-
scribed by Galileo as a "wonderful" way to draw exactly a parabola. The creation
of a mathematical object is somehow placed on the same level as the description
of a physical phenomenon. For Galileo the geometric form is concretely realized in
matter, the parabola is the trajectory. The new physics is a reification of celestial
mechanics in nature, it is a geometric physics and a physical geometry.
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3.5 Two proofs in two different contexts: a modern
textbook and Galileo’s Discourses

As we anticipated before, the proof, in the educational reconstruction carried out,
can be thought as an "epistemological activator". To understand how much the
Aristotelian vision permeated the vision of the world up to the sixteenth century,
it is interesting to consider the representation given by Tartaglia.

The perception of phenomena is conditioned by one’s own cultural substrate.
As stressed by Renn

The first part of the trajectory was conceived by Tartaglia as re-
flecting the initially dominant role of the violent motion, whereas the
last straight part is in accord with the eventual dominance of the pro-
jectile’s weight over the violent motion and the tendency to reach the
center of the earth. The curved middle part might have been conceived
of as a mixed motion compounded of both violent motion in the original
direction and natural motion vertical downward.5

On the other hand, In the notebook of Guidobaldo Del Monte, as we have
seen, the representation of the motion shows a symmetrical shape, which implies
that natural and violent motions can be composed and not only followed, and that
for the trajectory of motion there are possible shapes other than rectilinear or
curvilinear ones.

However, the conception of the opposition between natural and violent move-
ments persists. Guidobaldo observed that the motion of a projectile is of the
curvilinear type, and he drew a curve that could represent it, but he did not prove

5Renn, 2001
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that the trajectory of the motion corresponds to a particular curve. Before getting
to the heart of Galileo’s proof, let us consider following proof of parabolic motion,
taken from a modern common high school textbook by James Walker6.

What is the shape of the curvilinear trajectory of the projectile
thrown horizontally? We can find it by combining the equations x = v0t

and y = h− 1
2
− gt2 so as to express y as a function of x.

First of all from the equation x = v0t we derive the time.

t =
x

v0

Then we substitute this result in the equation y = h− 1
2
gt2 and so

we eliminate t.

y = h− 1

2
g

(
x

v0

)2

= h− g

2v20
x2

We observe that y is an equation of the type y = a + bx2, where
a = h = constant and b =

−g

2v20
= constant. This is the equation

of a parabola with concavity towards the bottom and represents the
characteristic shape of the trajectory of the motion of a projectile.

Faced with the simplicity of these few lines, what is the meaning of all the
reconstruction we are doing? Perhaps, among other things, also to restore the
historical importance of the birth of science. Bertolt Brecht, in his Life of Galileo,
when it is discovered that the Moon is made of rocks and mountains, and not of
celestial material, puts these words in the mouth of the scientist:

Don’t take your eye off the telescope, Sagredo. What you are seeing
is that there is no difference between heaven and earth. Today, January
10, 1610, humanity writes in its diary: "Heaven abolished".

Let us now see Galileo’s proof from Discourses. Galileo has yet introduced
uniform motion in an axiomatic way and has already shown that in the fall of a
body the space covered is proportional to the square of time.

6Walker, 2017
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Let it be a line ab, placed at the top, and a body moving with
uniform motion from a to b. Lacking the support of the plane at point
b, the body performs a natural motion along the perpendicular bn. Let
the line be, continuation of the line ab, be a measure of time, and on
this line an equal number of equal portions bd, cd, de should be marked.
From points c, d, e, draw equidistant lines perpendicular to bn. On the
first of these, take an arbitrary part ci. On the next line take one four
times greater, on the third one nine times greater, df , and so on on the
other lines according to the proportion of the squares of the portions
cd, db, de, in duplicate proportions of the same.
Furthermore, if the body, which from b towards c with uniform motion,
is added a downward motion of quantity ci, in time bc the body will be
in the extreme i.
Furthermore, if the body, which from b towards c with uniform motion,
is added a downward motion of quantity ci, in time bc the body will
be in the extreme i. Continuing to move, in a time bd, that is in a
time double of bc, it will have fallen by a space four times greater than
the space ci; in fact we have shown in the first treatise that the spaces
traveled by a heavy person, with naturally accelerated motion, are in
double proportion of the times. Similarly, the next space eh, covered
in time be, will be nine times greater; it will therefore be evident that
the spaces eh, df , ci, stand together as the squares of the lines eb, db,
cb. Now lead from the points io, f , h the lines io, fg, hl, equidistant
from the same eb: the lines hl, fg, i will be equal, one by one, to the
lines eb, db, cb; and likewise the lines bo, bg, bl will be equal to the lines
ci , df , eh; moreover the square of hl will be proportional to the square
of fg as the line lb is proportional to bg, and the square of fg will be
proportional to the square of io as gb is proportional to bo; therefore,
the points i, f , h are on one and the same parabolic line. Similarly, it
will be shown that, taking any number of equal parts of time of any
magnitude, the points which the moving body of such a compound
motion will occupy in those times will be found on the same parabolic
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line. It is therefore clear what we set out to demonstrate.7

7Galilei, Discourses
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3.6 Argumentation and proof

The difference between Walker’s and Galileo’s proofs leads us to ask ourselves:
what can be the usefulness of having several proofs of the same proposition? What
works and what may not work on an educational level. Let’s take a step back
and consider the ministerial indications for the teaching of mathematics in high
schools; here a particular formative aspect of the proof is highlighted: the student
must be able to argue his own convictions with examples and concatenations of
observations, he must also be able to change his opinion by recognizing the validity
of a logical argument.
Passing from the generic concept of argumentation to the more technical one of
mathematical proof, we are asked to focus on the modalities of the axiomatic-
deductive system.
In teaching theory, an argument is a path that starts with some data and arrives
at a conclusion, using some warrant which in turn is based on a foundation. In
the context of argumentation, the foundation can also be a personal experience or
a sensitive experience, in the context of demonstration the foundation must be a
theory.
In introducing students to the concept of proof, there may be difficulties in making
them perceive its necessity or validity. In the case of demonstrations of intuitive
truths, the proof can be perceived as superfluous if what one wants to prove seems
evident already in looking at the figure. Conversely, when demonstrations of less
intuitive facts are presented, the demonstration can be unconvincing or perhaps
too formal.

To overcome this paradox it is useful to reflect on the different functions of a
proof.8

Let us take as a reference probably the most famous theorem of all mathemat-
ics: Pythagoras’ theorem, of which there are a multitude of proofs after the one
provided by Euclid in the first book of the Elements. Why give further proofs, if
the theorem had already been proved? Simplifying, we can observe that there are
several macro typologies of proofs that perform different functions.
We have "visual" proofs, of which an example is that of the arrangement, which is
based on the idea of equidecomposable figures, and could be accepted by Euclid9.
The function of this type of proof is to convince. It is easier to "see" that the
Pythagorean theorem is true by observing such a proof than that of the Elements,
where previous results on parallelograms are used 10.

8Mariotti, 2006, pp. 173-204.
9The Chinese proof we saw in chapter one is also of this type.

10Or using what in the scholastic tradition is called Euclid’s Theorem or Euclid’s First Theorem,
which in the Elements is nothing else than the first part of proposition I.47, known as Pythagoras
Theorem.
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Another type of proof is that which uses results subsequent to the Pythagoras
theorem, such as the formula for the distance between two points or trigonometric
relations. Since these are based on the validity of the Pythagoras’ theorem, their
function is not to create new knowledge when to relate different parts of the math-
ematical building, convincing us of already known results through other results. It
is also a reassurance that the building is consistent.
Didactic theory shows that, if formally there is no difference between accepting
the validity of a proof and accepting the validity of an affirmation guaranteed by a
proof. But in the students’ perception there is a difference, and the need emerges
for an intuitive acceptance of the validity of a statement. Therefore if on the one
hand it is necessary to carry on the exposition of the axiomatic-deductive method,
with its essential formal and rigorous components, on the other hand this must be
accompanied, at least orally, by a more immediate and understandable discourse.

It is possible to characterize a mathematical theorem as consisting of a state-
ment, a proof, and the fact that the relationship between statement and proof
makes sense in a specific theoretical context. The same proof can be valid in one
theory and not be valid in another. Added to this are the inference rules, which
can be explicit or implicit.

We can say that a proof has an "argumentative" role when its goal is to convince
a result through a concatenation of arguments. A function has a "relational" role
when its goal is to show what other results it depends on, thus relating various
elements of a theory. These are the two roles that are exercised in teaching. In
research, the main function of demonstrations is to generate new knowledge. These
categories could also be used to characterize Walker and Galileo proofs.



56CHAPTER 3. A TEACHING MODULE WITHIN THE IDENTITIES PROJECT

3.7 A historical glimpse on conics
It is important to note that the characterization of the parabola used by Galileo
is that given by Apollonius. It is a characterization that in some way unites the
two main definitions of conics: that of a conic section, therefore determined by the
intersection of a cone and a plane, which therefore depends on the properties of
these two (fixing one and varying the other we get all the conics) and that of an ob-
ject that lives in a plane, which therefore depends on a single equation, or property.

Although in Apollonius there is of course the concept of the Cartesian plane
and the formalism used by Descartes, his work can be thought of as a forerunner
of analytic geometry.

In Euclid’s Elements the conical sections are obtained by keeping the plane
fixed and varying the shape of the cone with which it intersects.

In Apollonius the cone is fixed and the position of the plane varies.

In Apollonius the cone is generated by the rotation of a segment that has a
fixed point at one end, which will be the vertex and at the other end a point that
rotates on a circle. What we would call today the conic axis is called the "ordinate
direction", which is what we would now call the abscissa axis. Using the theory
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of proportions, Apollonius identifies a fundamental relationship that characterizes
the parabola, which today we would express as the proportionality between the
ordinate and the square of the abscissa.

Apollonius, however, does not characterize the parabola using the concept of
focus, because unlike the hyperbola and the ellipse it has one instead of two, being
the second focus identifiable only in projective geometry as an improper point.
The attempt to characterize all conics through their foci is carried out by Kepler,
a problem that emerged in the study of the physical phenomena of reflection and
refraction of light.

Back to the characterization of the motion of the projectiles, we note a method-
ological difference in Galileo’s approach compared to that of Guidobaldo Del Monte.
Guidobaldo starts from a graphic idea and tries to understand which curve you
resemble. It could be a hyperbola, a catenary, but it’s not essential. Galieo, on
the other hand, geometrically constructs the parabola, and the construction of him
has a Euclidean meaning, an existential meaning: what can be built exists.
Galileo takes up Apollonius’ idea of proportioning between segments (we would
say) of the abscissas and (we would say) squares of the ordinates, without having
in mind the modern concept of function. The reasoning is purely geometric, it is
verified that the constructed object is a parabola because it respects the definition
of Apollonius. His work does not suffer from the lack of analytical geometry to be
considered rigorous.

In conclusion, the rigor of Euclid, Apollonius, Descartes, Galileo, must be inter-
preted within their own system of knowledge, within a theory. Galileo was rigorous
in mathematically proving precise physical assumptions. We also observe that the
parabola in mathematics textbooks is made to coincide with his equation, but it is
much more and can be characterized in many different ways and has had a decisive
importance in the history of thought.
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Chapter 4

A study on awareness on proof

4.1 Context and method of the study

Aim of the study Our aim was to investigate preservice teachers’ attitudes and
knowledge on proof in mathematics and physics education. In particular, we have
tried to detect:

1. Awareness of the characteristics that define a demonstration, in general and
more specifically in a didactic context.

2. Awareness of the role of mathematical proof in physics and in a physics
didactic context.

Context of the study The IDENTITIED module on parabola and parabolic
motion, was held within the course on “Physics teaching, theoretical aspects and
experimental aspects.”, at the University of Bologna. The responsible teacher was
Olivia Levrini, four lectures were hold by: Paola Fantini (one lecture), high school
physics teacher, Laura Branchetti (two lectures), researcher in mathematics edu-
cation, and Veronica Bagaglini (one lecture), linguist.

The implementation lasted 20 hours, from the month of October to the month
of November 2020. About 60 university students in physics and mathematics were
involved.

At the end of the course the students were asked to deliver an essay following the
some questions both on the content of the module and on the educational value of
an historical and interdisciplinary approach to the content. Our analysis focuses on
the answers given by 25 students (14 mathematics student and 13 phisycs students)
to the following two questions:

1. What functions can a proof have and what characterizes different proofs, for
example the different proofs of the Pythagorean theorem?

2. What characterizes the proof in Galileo and the proof in Walker? What role
or function can these proofs have?

59
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Aims of data analysis Are mathematics and physics university students ac-
quainted with the construct of proof? Did the students understand the contents
of the module on proof? Did they appropriate the criteria to analyze a proof in
physic or mathematics education?

Methods of data analysis In the evaluation of the answers we used a rubric
composed by five parameters, to each of which we assigned a score from 1 to 5.

1. Correctness. With this parameter we assessed whether the student described
the different functions of the proofs as they were presented in class, associ-
ating each with the correct meaning.

2. Completeness. This parameter evaluates whether the student has cited all
the functions mentioned, whether he refers to the different examples of proofs
that have been proposed with respect to the Pythagoras’ theorem.

3. Richness: Is the argument rich? Was the student able to present a well
articulated and dense speech or is the argument excessively concise and / or
simplified?

4. Re-elaboration: Does the student’s answer show traces of ideas, concepts,
words that obviously belong to himself? Does the articulation of the answer
show signs of personal re-elaboration?

5. Consistency: In answering the second question, does the student use the cri-
teria introduced in the first answer? Does the student mentions the different
functions that a proof can have to dispel the differences between Galileo’s
proof and Walker’s one? If he has introduced new criteria in the first answer,
does he then use them when talking about the differences?

A careful evaluation of the esseays was carried out by me and Dr. Sara Sa-
tanassi, separately. Then we triangulated the outcomes of the assessment, con-
fronting ourselves we reached a common agreement. We used different markers in
the text to highlight different aspects: orange to indicate expressions that were not
precise enough, red for sentences that contained conceptual errors, bold for sen-
tences that indicated a personal re-ealboration and blue for sentences that indicate
a particular consistency between answer 1 and answer 2.
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This was what the grid looked like.

Distributions of assessments Let us now observe the distributions of the eval-
uations in form of histograms.

1.
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2.

We observe that the students had a good performance in terms of correctness
and completness, that is, in reporting what was explained in class.

3.

4.

We observe a lower performance in terms of richness and re-elaboration.
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5.

A good majority of the students were consistent.

An overall picture In order to have an overall picture organize the essays in
five categories:

• A. Essays very weak, ranking from 1 to 3 in all the first four criteria;

• B. Essays ranking from 4 to 5 in the first criterion on correctness, but rather
week (ranking from 1 to 3) along all the other three criteria (completeness,
richness,and personal re-elaboration);

• C. Essays ranking from 3 to 5 in the first two criteria, correctness and com-
pletness, and from 1 to 2 in richness and personal elaboration;

• D. Essays ranking 3 or 4 in all the criteria;

• E. Essays ranking 4 or 5 in the personal re-elaboration but rather weak (from
1 to 2) in one or more of the other criteria.
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4.2 Interpretation of the data

Responses analysis Observing the histograms, although the sample size can-
not give statistically significant indications, students seems to have understood the
different functions of the proof and, sometimes, to critically use them to reflect on
Galileo’s and Walker’s proof. In particular we observed a better performance in
terms of correctness and completeness rather than in richness and re-elaboration.
This may suggest a lack of familiarity with the concepts presented, as evidenced
by another test, which we will present later.

Several students, speaking of the differences between Galieleo’s and Walker’s
proof, have described Galileo’s as based on "senses" or "perception", but also as
a "physical" proof, as opposed to Walker’s, "formal","algebraic" and "mathemati-
cal". Several students had the perception that Galileo’s proof was not mathemat-
ically rigorous.

For example, a mathematics student wrote: "Galileo’s proof is more physical,
Walker’s one is purely mathematical. It could be said that Walker’s proof plays a
more abstract role. While Galileo’s is more operational, that is, it does not serve
so much to better describe what is seen, rather it provides a "recipe" useful for
carrying out precise modifications".

Another mathematics student: "If Galileo only mentions mathematics (speaking
of a parabola), Walker only uses mathematics in his proof; this makes understand-
ing on a physical level more difficult. It can be said that Galileo’s proof is more
effective on a cognitive level because it leads to reasoning and asking questions about
physical reality, while Walker’s proof is more effective on a conceptual level since
it leads to the equation of parabolic motion".

We note that for the student mathematics is mentioned only by referring to the
parabola, not for example by referring to Euclid’s theory of proportions. Another
mathematics student: "Galileo in fact chooses a sensory-visual approach, while in
Walker we proceed in an abstract way and the demonstrative structure is more ex-
plicit".

And even a physics student uses similar terms: "Galileo’s proof is characterized
by being more "sensitive" than Walker’s one: it is as if Galileo’s proof had been
built step by step by defining the tools and assumptions that uses. Galileo’s demon-
stration is comparable to a recipe where the basic ingredients are introduced and
described and then how to work with them is explained, giving precise instructions
that lead to the final result".

Several students misinterpreted a paradox presented during the lesson on argu-
mentation and proof, perhaps not sufficiently discussed by the teacher, who spoke
of intuitive proofs and rigorous proofs. Several students expressed like there were
only two types of proof: those intuitive but not rigorous and those rigorous but
too abstract, those so simple that they seem superfluous or those too difficult that
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you don’t understand.

For example a mathematics student wrote: “In the didactic field there are two
fundamental types of use of thought: one more intuitive, immediate, self-evident
and clear, one trusts the validity spontaneously without rigorous affirmation of
concatenations, the other more meditated, analytical, which often requires to think
about it. If the result is intuitive, the demonstration has no convincing power, in the
second case the passages are seen only as something formal, they create difficulties.”

We observe that not all the students do seem aware that mathematics is a part
of physics, thinking that there are mathematical proofs and physical proofs. It
is also interesting to note the prejudice that algebra is more mathematical than
geometry, which appears closer to empirical reality.

Lack of an introduction to the concept of proof Before answering the
questionnaire we have already discussed, 42 students on the course responded to
an anonymous interview on wooclap.

To the question: before this course, have you ever thought deeply about the
concept of proof? Only 1 student chose as an answer: "yes, explicitly and in depth".
14 chose as an answer: "yes, explicitly but not in depth", 16 chose: "a little, but not
in a systematic way" a little, but never in a systematic way "and 11 chose:" no,
not explicitly". Which means in this case most of the students, 64 percent, even if
they follow a physics-mathematical course of study, have never thought about the
concept of proof.

This may explain why, as emerged from the question "which of the two demon-
strations of parbolic motion did you find more convincing?", nearly 70 percent of
students said they found Walker’s one more convincing. We might think this is due
to Walker’s proof being taken from a textbook and more aligned with contempo-
rary teaching. But from the answers given by the students in their paper, we have
seen a difficulty emerge in recognizing Galileo’s proof as a legitimate mathematical
proof.
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Conclusions

My interest in the interdisciplinarity between mathematics and physics stems from
the simple observation that these are subjects often taught by the same teacher in
high school; however in university courses the correlation between these two disci-
plines from a didactic point of view is not stressed. The growing interest the field
of interdisciplinarity between mathematics and phyisics is underlined by various
factors, among which we mention the birth of STEM education and the reform of
the Italian state exam which concludes the path of the scientific high school, where
the classic written test in mathematics was from 2019 converted into a math and
physics test.

The choice to start the thesis with a chapter of historical introduction was spon-
taneous but not accidental. The construction of the IDENTITIES didactic module
also reflects this choice. In my opinion, the lack of historicization creates an unnat-
ural separation in the didactic sphere. In a context where everything is "history":
history of literature, history of art, history of philosophy, history tout-court, sci-
entific subjects, except for a few brief hints that are considered unimportant, are
often presented either or at least perceived as revealed truths, abstract and discon-
nected from the rest of knowledge.
At the suggestion of Professor Coen from Bologna, I was studying Chemla’s text
The history of mathematical proof in ancient traditions (2012), I was lucky enough
to find in the mathematics library of Padua the small text by Swetz and Kao, Was
Pythagoras Chinese? (1977). I found it particularly interesting to read there a
proof of the Pythagoras’ theorem, much more intuitive and no less consistent than
the one presented in Euclid’s elements some two hundred years later. Having the
opportunity to reflect on historical information is something that transforms the
perception of a discipilina, makes it something human and alive.

The historical discourse integrates well with the teaching theory papers that
we have analyzed. The more general objective is to make the object of study
something that can be questioned and that can give different answers depending
on the questions that are asked. Treating mathematics, which is part of physics,
as a language through which reasoning can be built, is useful for a deeper learning
of physics; it is also something that restores dignity to mathematics, commonly
perceived as "that thing you count with".

The specific idea for the thesis was proposed to me by Professor Levrini, who
allowed me to follow the IDENTITIES module live at the University of Bologna,
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before I moved to Trento.
It was interesting for me to understand how a research study in the didactic field is
carried out, and how many nuances should be considered. Analyzing the students’
responses to the module, although the majority were positive, and some of these
also quite precise and punctual, we saw that several students had difficulties, more
than one might expect in degree courses in mathematics and physics. it is legitimate
to ask whether there are structural problems behind these shortcomings. The fact
that 64 percent of students had never systematically addressed the concept of
demonstration during their course of study suggests that there is a lack in this
sense, especially in the curricula that train new teachers.
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